(*#* #stop file *) Require subst0_subst0. Require pr0_subst0. Require cpr0_defs. Require pr3_defs. Require pr3_props. Require pr3_confluence. Require pc3_defs. Section pc3_trans. (******************************************************) Theorem pc3_t: (t2,c,t1:?) (pc3 c t1 t2) -> (t3:?) (pc3 c t2 t3) -> (pc3 c t1 t3). Intros; Repeat Pc3Unfold; Pr3Confluence; XEAuto. Qed. Theorem pc3_pr2_u2: (c:?; t0,t1:?) (pr2 c t0 t1) -> (t2:?) (pc3 c t0 t2) -> (pc3 c t1 t2). Intros; Apply (pc3_t t0); XAuto. Qed. Theorem pc3_tail_12: (c:?; u1,u2:?) (pc3 c u1 u2) -> (k:?; t1,t2:?) (pc3 (CTail c k u2) t1 t2) -> (pc3 c (TTail k u1 t1) (TTail k u2 t2)). Intros. EApply pc3_t; [ Apply pc3_tail_1 | Apply pc3_tail_2 ]; XAuto. Qed. Theorem pc3_tail_21: (c:?; u1,u2:?) (pc3 c u1 u2) -> (k:?; t1,t2:?) (pc3 (CTail c k u1) t1 t2) -> (pc3 c (TTail k u1 t1) (TTail k u2 t2)). Intros. EApply pc3_t; [ Apply pc3_tail_2 | Apply pc3_tail_1 ]; XAuto. Qed. End pc3_trans. Hints Resolve pc3_t pc3_tail_12 pc3_tail_21 : ltlc. Tactic Definition Pc3T := Match Context With | [ _: (pr3 ?1 ?2 (TTail ?3 ?4 ?5)); _: (pc3 ?1 ?6 ?4) |- ? ] -> LApply (pc3_t (TTail ?3 ?4 ?5) ?1 ?2); [ Intros H_x | XAuto ]; LApply (H_x (TTail ?3 ?6 ?5)); [ Clear H_x; Intros | Apply pc3_s; XAuto ] | [ _: (pc3 ?1 ?2 ?3); _: (pr3 ?1 ?3 ?4) |- ? ] -> LApply (pc3_t ?3 ?1 ?2); [ Intros H_x | XAuto ]; LApply (H_x ?4); [ Clear H_x; Intros | XAuto ] | [ _: (pc3 ?1 ?2 ?3); _: (pc3 ?1 ?4 ?3) |- ? ] -> LApply (pc3_t ?3 ?1 ?2); [ Intros H_x | XAuto ]; LApply (H_x ?4); [ Clear H_x; Intros | XAuto ]. Section pc3_context. (****************************************************) Theorem pc3_pr0_pr2_t: (u1,u2:?) (pr0 u2 u1) -> (c:?; t1,t2:?; k:?) (pr2 (CTail c k u2) t1 t2) -> (pc3 (CTail c k u1) t1 t2). Intros. Inversion H0; Clear H0; [ XAuto | NewInduction i ]. (* case 1: pr2_delta i = 0 *) DropGenBase; Inversion H0; Clear H0 H4 H5 H6 c k t. Rewrite H7 in H; Clear H7 u2. Pr0Subst0; Apply pc3_pr3_t with t0:=x; XEAuto. (* case 2: pr2_delta i > 0 *) NewInduction k; DropGenBase; XEAuto. Qed. Theorem pc3_pr2_pr2_t: (c:?; u1,u2:?) (pr2 c u2 u1) -> (t1,t2:?; k:?) (pr2 (CTail c k u2) t1 t2) -> (pc3 (CTail c k u1) t1 t2). Intros until 1; Inversion H; Clear H; Intros. (* case 1: pr2_free *) EApply pc3_pr0_pr2_t; [ Apply H0 | XAuto ]. (* case 2: pr2_delta *) Inversion H; [ XAuto | NewInduction i0 ]. (* case 2.1: i0 = 0 *) DropGenBase; Inversion H4; Clear H3 H4 H7 t t4. Rewrite <- H9; Rewrite H10 in H; Rewrite <- H11 in H6; Clear H9 H10 H11 d0 k u0. Pr0Subst0; Subst0Subst0; Arith9'In H6 i. EApply pc3_pr2_u. EApply pr2_delta; XEAuto. Apply pc3_pr2_x; EApply pr2_delta; [ Idtac | XEAuto | XEAuto ]; XEAuto. (* case 2.2: i0 > 0 *) Clear IHi0; NewInduction k; DropGenBase; XEAuto. Qed. Theorem pc3_pr2_pr3_t: (c:?; u2,t1,t2:?; k:?) (pr3 (CTail c k u2) t1 t2) -> (u1:?) (pr2 c u2 u1) -> (pc3 (CTail c k u1) t1 t2). Intros until 1; XElim H; Intros. (* case 1: pr3_refl *) XAuto. (* case 2: pr3_sing *) EApply pc3_t. EApply pc3_pr2_pr2_t; [ Apply H2 | Apply H ]. XAuto. Qed. Theorem pc3_pr3_pc3_t: (c:?; u1,u2:?) (pr3 c u2 u1) -> (t1,t2:?; k:?) (pc3 (CTail c k u2) t1 t2) -> (pc3 (CTail c k u1) t1 t2). Intros until 1; XElim H; Intros. (* case 1: pr3_refl *) XAuto. (* case 2: pr3_sing *) Apply H1; Pc3Unfold. EApply pc3_t; [ Idtac | Apply pc3_s ]; EApply pc3_pr2_pr3_t; XEAuto. Qed. End pc3_context. Tactic Definition Pc3Context := Match Context With | [ H1: (pr0 ?3 ?2); H2: (pr2 (CTail ?1 ?4 ?3) ?5 ?6) |- ? ] -> LApply (pc3_pr0_pr2_t ?2 ?3); [ Clear H1; Intros H1 | XAuto ]; LApply (H1 ?1 ?5 ?6 ?4); [ Clear H1 H2; Intros | XAuto ] | [ H1: (pr0 ?3 ?2); H2: (pr3 (CTail ?1 ?4 ?3) ?5 ?6) |- ? ] -> LApply (pc3_pr2_pr3_t ?1 ?3 ?5 ?6 ?4); [ Clear H2; Intros H2 | XAuto ]; LApply (H2 ?2); [ Clear H1 H2; Intros | XAuto ] | [ H1: (pr2 ?1 ?3 ?2); H2: (pr2 (CTail ?1 ?4 ?3) ?5 ?6) |- ? ] -> LApply (pc3_pr2_pr2_t ?1 ?2 ?3); [ Clear H1; Intros H1 | XAuto ]; LApply (H1 ?5 ?6 ?4); [ Clear H1 H2; Intros | XAuto ] | [ H1: (pr2 ?1 ?3 ?2); H2: (pr3 (CTail ?1 ?4 ?3) ?5 ?6) |- ? ] -> LApply (pc3_pr2_pr3_t ?1 ?3 ?5 ?6 ?4); [ Clear H2; Intros H2 | XAuto ]; LApply (H2 ?2); [ Clear H1 H2; Intros | XAuto ] | [ H1: (pr3 ?1 ?3 ?2); H2: (pc3 (CTail ?1 ?4 ?3) ?5 ?6) |- ? ] -> LApply (pc3_pr3_pc3_t ?1 ?2 ?3); [ Clear H1; Intros H1 | XAuto ]; LApply (H1 ?5 ?6 ?4); [ Clear H1 H2; Intros | XAuto ] | _ -> Pr3Context. Section pc3_lift. (*******************************************************) Theorem pc3_lift: (c,e:?; h,d:?) (drop h d c e) -> (t1,t2:?) (pc3 e t1 t2) -> (pc3 c (lift h d t1) (lift h d t2)). Intros. Pc3Unfold. EApply pc3_pr3_t; (EApply pr3_lift; [ XEAuto | Apply H1 Orelse Apply H2 ]). Qed. End pc3_lift. Hints Resolve pc3_lift : ltlc. Section pc3_cpr0. (*******************************************************) Remark pc3_cpr0_t_aux: (c1,c2:?) (cpr0 c1 c2) -> (k:?; u,t1,t2:?) (pr3 (CTail c1 k u) t1 t2) -> (pc3 (CTail c2 k u) t1 t2). Intros; XElim H0; Intros. (* case 1.1: pr3_refl *) XAuto. (* case 1.2: pr3_sing *) EApply pc3_t; [ Idtac | XEAuto ]. Clear H2 t1 t2. Inversion_clear H0. (* case 1.2.1: pr2_free *) XAuto. (* case 1.2.2: pr2_delta *) Cpr0Drop; Pr0Subst0. EApply pc3_pr2_u; [ EApply pr2_delta; XEAuto | XAuto ]. Qed. Theorem pc3_cpr0_t: (c1,c2:?) (cpr0 c1 c2) -> (t1,t2:?) (pr3 c1 t1 t2) -> (pc3 c2 t1 t2). Intros until 1; XElim H; Intros. (* case 1: cpr0_refl *) XAuto. (* case 2: cpr0_comp *) Pc3Context; Pc3Unfold. EApply pc3_t; [ Idtac | Apply pc3_s ]; EApply pc3_cpr0_t_aux; XEAuto. Qed. Theorem pc3_cpr0: (c1,c2:?) (cpr0 c1 c2) -> (t1,t2:?) (pc3 c1 t1 t2) -> (pc3 c2 t1 t2). Intros; Pc3Unfold. EApply pc3_t; [ Idtac | Apply pc3_s ]; EApply pc3_cpr0_t; XEAuto. Qed. End pc3_cpr0. Hints Resolve pc3_cpr0 : ltlc. Section pc3_ind_left. (***************************************************) Inductive pc3_left [c:C] : T -> T -> Prop := | pc3_left_r : (t:?) (pc3_left c t t) | pc3_left_ur: (t1,t2:?) (pr2 c t1 t2) -> (t3:?) (pc3_left c t2 t3) -> (pc3_left c t1 t3) | pc3_left_ux: (t1,t2:?) (pr2 c t1 t2) -> (t3:?) (pc3_left c t1 t3) -> (pc3_left c t2 t3). Hint pc3_left: ltlc := Constructors pc3_left. Remark pc3_left_pr3: (c:?; t1,t2:?) (pr3 c t1 t2) -> (pc3_left c t1 t2). Intros; XElim H; XEAuto. Qed. Remark pc3_left_trans: (c:?; t1,t2:?) (pc3_left c t1 t2) -> (t3:?) (pc3_left c t2 t3) -> (pc3_left c t1 t3). Intros until 1; XElim H; XEAuto. Qed. Hints Resolve pc3_left_trans : ltlc. Remark pc3_left_sym: (c:?; t1,t2:?) (pc3_left c t1 t2) -> (pc3_left c t2 t1). Intros; XElim H; XEAuto. Qed. Hints Resolve pc3_left_sym pc3_left_pr3 : ltlc. Remark pc3_left_pc3: (c:?; t1,t2:?) (pc3 c t1 t2) -> (pc3_left c t1 t2). Intros; Pc3Unfold; XEAuto. Qed. Remark pc3_pc3_left: (c:?; t1,t2:?) (pc3_left c t1 t2) -> (pc3 c t1 t2). Intros; XElim H; XEAuto. Qed. Hints Resolve pc3_left_pc3 pc3_pc3_left : ltlc. Theorem pc3_ind_left: (c:C; P:(T->T->Prop)) ((t:T) (P t t)) -> ((t1,t2:T) (pr2 c t1 t2) -> (t3:T) (pc3 c t2 t3) -> (P t2 t3) -> (P t1 t3)) -> ((t1,t2:T) (pr2 c t1 t2) -> (t3:T) (pc3 c t1 t3) -> (P t1 t3) -> (P t2 t3)) -> (t,t0:T) (pc3 c t t0) -> (P t t0). Intros; ElimType (pc3_left c t t0); XEAuto. Qed. End pc3_ind_left.