Require Export subst0_defs. (*#* #caption "axioms for the relation $\\PrZ{}{}$", "reflexivity", "compatibility", "$\\beta$-contraction", "$\\upsilon$-swap", "$\\delta$-expansion", "$\\zeta$-contraction", "$\\epsilon$-contraction" *) (*#* #cap #cap t, t1, t2 #alpha u in V, u1 in V1, u2 in V2, v1 in W1, v2 in W2, w in T, k in z *) Inductive pr0 : T -> T -> Prop := (* structural rules *) | pr0_refl : (t:?) (pr0 t t) | pr0_comp : (u1,u2:?) (pr0 u1 u2) -> (t1,t2:?) (pr0 t1 t2) -> (k:?) (pr0 (TTail k u1 t1) (TTail k u2 t2)) (* axiom rules *) | pr0_beta : (u,v1,v2:?) (pr0 v1 v2) -> (t1,t2:?) (pr0 t1 t2) -> (pr0 (TTail (Flat Appl) v1 (TTail (Bind Abst) u t1)) (TTail (Bind Abbr) v2 t2)) | pr0_upsilon: (b:?) ~b=Abst -> (v1,v2:?) (pr0 v1 v2) -> (u1,u2:?) (pr0 u1 u2) -> (t1,t2:?) (pr0 t1 t2) -> (pr0 (TTail (Flat Appl) v1 (TTail (Bind b) u1 t1)) (TTail (Bind b) u2 (TTail (Flat Appl) (lift (1) (0) v2) t2))) | pr0_delta : (u1,u2:?) (pr0 u1 u2) -> (t1,t2:?) (pr0 t1 t2) -> (w:?) (subst0 (0) u2 t2 w) -> (pr0 (TTail (Bind Abbr) u1 t1) (TTail (Bind Abbr) u2 w)) | pr0_zeta : (b:?) ~b=Abst -> (t1,t2:?) (pr0 t1 t2) -> (u:?) (pr0 (TTail (Bind b) u (lift (1) (0) t1)) t2) | pr0_epsilon: (t1,t2:?) (pr0 t1 t2) -> (u:?) (pr0 (TTail (Flat Cast) u t1) t2). (*#* #stop file *) Hint pr0 : ltlc := Constructors pr0. Section pr0_gen_base. (***************************************************) Theorem pr0_gen_sort : (x:?; n:?) (pr0 (TSort n) x) -> x = (TSort n). Intros; Inversion H; XAuto. Qed. Theorem pr0_gen_lref : (x:?; n:?) (pr0 (TLRef n) x) -> x = (TLRef n). Intros; Inversion H; XAuto. Qed. Theorem pr0_gen_abst : (u1,t1,x:?) (pr0 (TTail (Bind Abst) u1 t1) x) -> (EX u2 t2 | x = (TTail (Bind Abst) u2 t2) & (pr0 u1 u2) & (pr0 t1 t2) ). Intros; Inversion H; Clear H. (* case 1 : pr0_refl *) XEAuto. (* case 2 : pr0_cont *) XEAuto. (* case 3 : pr0_zeta *) XElim H4; XAuto. Qed. Theorem pr0_gen_appl : (u1,t1,x:?) (pr0 (TTail (Flat Appl) u1 t1) x) -> (OR (EX u2 t2 | x = (TTail (Flat Appl) u2 t2) & (pr0 u1 u2) & (pr0 t1 t2) ) | (EX y1 z1 u2 t2 | t1 = (TTail (Bind Abst) y1 z1) & x = (TTail (Bind Abbr) u2 t2) & (pr0 u1 u2) & (pr0 z1 t2) ) | (EX b y1 z1 u2 v2 t2 | ~b=Abst & t1 = (TTail (Bind b) y1 z1) & x = (TTail (Bind b) v2 (TTail (Flat Appl) (lift (1) (0) u2) t2)) & (pr0 u1 u2) & (pr0 y1 v2) & (pr0 z1 t2)) ). Intros; Inversion H; XEAuto. Qed. Theorem pr0_gen_cast : (u1,t1,x:?) (pr0 (TTail (Flat Cast) u1 t1) x) -> (EX u2 t2 | x = (TTail (Flat Cast) u2 t2) & (pr0 u1 u2) & (pr0 t1 t2) ) \/ (pr0 t1 x). Intros; Inversion H; XEAuto. Qed. End pr0_gen_base. Hints Resolve pr0_gen_sort pr0_gen_lref : ltlc. Tactic Definition Pr0GenBase := Match Context With | [ H: (pr0 (TSort ?1) ?2) |- ? ] -> LApply (pr0_gen_sort ?2 ?1); [ Clear H; Intros | XAuto ] | [ H: (pr0 (TLRef ?1) ?2) |- ? ] -> LApply (pr0_gen_lref ?2 ?1); [ Clear H; Intros | XAuto ] | [ H: (pr0 (TTail (Bind Abst) ?1 ?2) ?3) |- ? ] -> LApply (pr0_gen_abst ?1 ?2 ?3); [ Clear H; Intros H | XAuto ]; XElim H; Intros | [ H: (pr0 (TTail (Flat Appl) ?1 ?2) ?3) |- ? ] -> LApply (pr0_gen_appl ?1 ?2 ?3); [ Clear H; Intros H | XAuto ]; XElim H; Intros H; XElim H; Intros | [ H: (pr0 (TTail (Flat Cast) ?1 ?2) ?3) |- ? ] -> LApply (pr0_gen_cast ?1 ?2 ?3); [ Clear H; Intros H | XAuto ]; XElim H; [ Intros H; XElim H; Intros | Intros ].