(*#* #stop file *) Require Export terms_defs. Definition wadd : (nat -> nat) -> nat -> (nat -> nat) := [f;w;n] Cases n of (0) => w | (S m) => (f m) end. Fixpoint weight_map [f:nat->nat; t:T] : nat := Cases t of | (TSort n) => (0) | (TLRef n) => (f n) | (TTail (Bind Abbr) u t) => (S (plus (weight_map f u) (weight_map (wadd f (S (weight_map f u))) t))) | (TTail (Bind _) u t) => (S (plus (weight_map f u) (weight_map (wadd f (0)) t))) | (TTail _ u t) => (S (plus (weight_map f u) (weight_map f t))) end. Definition weight : T -> nat := (weight_map [_](0)). Definition tlt : T -> T -> Prop := [t1,t2](lt (weight t1) (weight t2)). Section wadd_props. (*****************************************************) Theorem wadd_le: (f,g:?) ((n:?) (le (f n) (g n))) -> (v,w:?) (le v w) -> (n:?) (le (wadd f v n) (wadd g w n)). XElim n; Simpl; XAuto. Qed. Theorem wadd_lt: (f,g:?) ((n:?) (le (f n) (g n))) -> (v,w:?) (lt v w) -> (n:?) (le (wadd f v n) (wadd g w n)). XElim n; Simpl; XAuto. Qed. Theorem wadd_O: (n:?) (wadd [_](0) (0) n) = (0). XElim n; XAuto. Qed. End wadd_props. Hints Resolve wadd_le wadd_lt wadd_O : ltlc. Section weight_props. (***************************************************) Theorem weight_le : (t:?; f,g:?) ((n:?) (le (f n) (g n))) -> (le (weight_map f t) (weight_map g t)). XElim t; [ XAuto | Simpl; XAuto | Idtac ]. XElim k; Simpl; [ Idtac | XAuto ]. XElim b; Auto 7 with ltlc. (**) Qed. Theorem weight_eq : (t:?; f,g:?) ((n:?) (f n) = (g n)) -> (weight_map f t) = (weight_map g t). Intros; Apply le_antisym; Apply weight_le; Intros; Rewrite (H n); XAuto. Qed. Hints Resolve weight_le weight_eq : ltlc. Theorem weight_add_O : (t:?) (weight_map (wadd [_](0) (0)) t) = (weight_map [_](0) t). XAuto. Qed. Theorem weight_add_S : (t:?; m:?) (le (weight_map (wadd [_](0) (0)) t) (weight_map (wadd [_](0) (S m)) t)). XAuto. Qed. End weight_props. Hints Resolve weight_le weight_add_S : ltlc. Section tlt_props. (******************************************************) Theorem tlt_trans: (v,u,t:?) (tlt u v) -> (tlt v t) -> (tlt u t). Unfold tlt; XEAuto. Qed. Theorem tlt_tail_sx: (k:?; u,t:?) (tlt u (TTail k u t)). Unfold tlt weight. XElim k; Simpl; [ XElim b | Idtac ]; XAuto. Qed. Theorem tlt_tail_dx: (k:?; u,t:?) (tlt t (TTail k u t)). Unfold tlt weight. XElim k; Simpl; [ Idtac | XAuto ]. XElim b; Intros; Try Rewrite weight_add_O; [ Idtac | XAuto | XAuto ]. EApply lt_le_trans; [ Apply lt_n_Sn | Apply le_n_S ]. EApply le_trans; [ Rewrite <- (weight_add_O t); Apply weight_add_S | XAuto ]. Qed. End tlt_props. Hints Resolve tlt_tail_sx tlt_tail_dx tlt_trans : ltlc. Section tlt_wf. (*********************************************************) Local Q: (T -> Prop) -> nat -> Prop := [P;n] (t:?) (weight t) = n -> (P t). Remark q_ind: (P:T->Prop)((n:?) (Q P n)) -> (t:?) (P t). Unfold Q; Intros. Apply (H (weight t) t); XAuto. Qed. Theorem tlt_wf_ind: (P:T->Prop) ((t:?)((v:?)(tlt v t) -> (P v)) -> (P t)) -> (t:?)(P t). Unfold tlt; Intros. XElimUsing q_ind t; Intros. Apply lt_wf_ind; Clear n; Intros. Unfold Q in H0; Unfold Q; Intros. Rewrite <- H1 in H0; Clear H1. Apply H; XEAuto. Qed. End tlt_wf.