(* Copyright (C) 2000, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://cs.unibo.it/helm/. *) exception NotImplemented;; let fresh_id seed ids_to_terms ids_to_father_ids = fun father t -> let res = "i" ^ string_of_int !seed in incr seed ; Hashtbl.add ids_to_father_ids res father ; Hashtbl.add ids_to_terms res t ; res ;; exception NotEnoughElements;; exception NameExpected;; (*CSC: cut&paste da cicPp.ml *) (* get_nth l n returns the nth element of the list l if it exists or *) (* raises NotEnoughElements if l has less than n elements *) let rec get_nth l n = match (n,l) with (1, he::_) -> he | (n, he::tail) when n > 1 -> get_nth tail (n-1) | (_,_) -> raise NotEnoughElements ;; let acic_of_cic_env' seed ids_to_terms ids_to_father_ids ids_to_inner_sorts ids_to_inner_types metasenv env t = let module T = CicTypeChecker in let module C = Cic in let fresh_id' = fresh_id seed ids_to_terms ids_to_father_ids in let rec aux computeinnertypes father bs tt = let fresh_id'' = fresh_id' father tt in let aux' = aux true (Some fresh_id'') in (* First of all we compute the inner type and the inner sort *) (* of the term. They may be useful in what follows. *) (*CSC: This is a very inefficient way of computing inner types *) (*CSC: and inner sorts: very deep terms have their types/sorts *) (*CSC: computed again and again. *) let string_of_sort = function C.Sort C.Prop -> "Prop" | C.Sort C.Set -> "Set" | C.Sort C.Type -> "Type" | _ -> assert false in let ainnertype,innertype,innersort = let cicenv = List.map (function (_,ty) -> ty) bs in (*CSC: Here we need the algorithm for Coscoy's double type-inference *) (*CSC: (expected type + inferred type). Just for now we use the usual *) (*CSC: type-inference, but the result is very poort. As a very weak *) (*CSC: patch, I apply whd to the computed type. Full beta *) (*CSC: reduction would be a much better option. *) let innertype = CicReduction.whd cicenv (T.type_of_aux' metasenv cicenv tt) in let innersort = T.type_of_aux' metasenv cicenv innertype in let ainnertype = if computeinnertypes then Some (aux false (Some fresh_id'') bs innertype) else None in ainnertype, innertype, string_of_sort innersort in let add_inner_type id = match ainnertype with None -> () | Some ainnertype -> Hashtbl.add ids_to_inner_types id ainnertype in match tt with C.Rel n -> let id = match get_nth bs n with (C.Name s,_) -> s | _ -> raise NameExpected in Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; C.ARel (fresh_id'', n, id) | C.Var uri -> Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; C.AVar (fresh_id'', uri) | C.Meta n -> Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; C.AMeta (fresh_id'', n) | C.Sort s -> C.ASort (fresh_id'', s) | C.Implicit -> C.AImplicit (fresh_id'') | C.Cast (v,t) -> Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; if innersort = "Prop" then add_inner_type fresh_id'' ; C.ACast (fresh_id'', aux' bs v, aux' bs t) | C.Prod (n,s,t) -> Hashtbl.add ids_to_inner_sorts fresh_id'' (string_of_sort innertype) ; C.AProd (fresh_id'', n, aux' bs s, aux' ((n, C.Decl s)::bs) t) | C.Lambda (n,s,t) -> Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; if innersort = "Prop" then begin let father_is_lambda = match father with None -> false | Some father' -> match Hashtbl.find ids_to_terms father' with C.Lambda _ -> true | _ -> false in if not father_is_lambda then add_inner_type fresh_id'' end ; C.ALambda (fresh_id'',n, aux' bs s, aux' ((n, C.Decl s)::bs) t) | C.LetIn (n,s,t) -> Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; C.ALetIn (fresh_id'', n, aux' bs s, aux' ((n, C.Def s)::bs) t) | C.Appl l -> Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; if innersort = "Prop" then add_inner_type fresh_id'' ; C.AAppl (fresh_id'', List.map (aux' bs) l) | C.Const (uri,cn) -> Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; C.AConst (fresh_id'', uri, cn) | C.Abst _ -> raise NotImplemented | C.MutInd (uri,cn,tyno) -> C.AMutInd (fresh_id'', uri, cn, tyno) | C.MutConstruct (uri,cn,tyno,consno) -> Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; C.AMutConstruct (fresh_id'', uri, cn, tyno, consno) | C.MutCase (uri, cn, tyno, outty, term, patterns) -> Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; if innersort = "Prop" then add_inner_type fresh_id'' ; C.AMutCase (fresh_id'', uri, cn, tyno, aux' bs outty, aux' bs term, List.map (aux' bs) patterns) | C.Fix (funno, funs) -> let names = List.map (fun (name,_,ty,_) -> C.Name name, C.Decl ty) funs in Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; if innersort = "Prop" then add_inner_type fresh_id'' ; C.AFix (fresh_id'', funno, List.map (fun (name, indidx, ty, bo) -> (name, indidx, aux' bs ty, aux' (names@bs) bo) ) funs ) | C.CoFix (funno, funs) -> let names = List.map (fun (name,ty,_) -> C.Name name, C.Decl ty) funs in Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; if innersort = "Prop" then add_inner_type fresh_id'' ; C.ACoFix (fresh_id'', funno, List.map (fun (name, ty, bo) -> (name, aux' bs ty, aux' (names@bs) bo) ) funs ) in aux true None env t ;; let acic_of_cic_env metasenv env t = let ids_to_terms = Hashtbl.create 503 in let ids_to_father_ids = Hashtbl.create 503 in let ids_to_inner_sorts = Hashtbl.create 503 in let ids_to_inner_types = Hashtbl.create 503 in let seed = ref 0 in acic_of_cic_env' seed ids_to_terms ids_to_father_ids ids_to_inner_sorts ids_to_inner_types metasenv env t, ids_to_terms, ids_to_father_ids, ids_to_inner_sorts, ids_to_inner_types ;; exception Found of (Cic.name * Cic.context_entry) list;; (* get_context_of_meta meta term *) (* returns the context of the occurrence of [meta] in [term]. *) (* Warning: if [meta] occurs not linearly in [term], the context *) (* of one "random" occurrence is returned. *) let get_context_of_meta meta term = let module C = Cic in let rec aux ctx = function C.Rel _ | C.Var _ -> () | C.Meta i when meta = i -> raise (Found ctx) | C.Meta _ | C.Sort _ | C.Implicit -> () | C.Cast (te,ty) -> aux ctx te ; aux ctx ty | C.Prod (n,s,t) -> aux ctx s ; aux ((n, C.Decl s)::ctx) t | C.Lambda (n,s,t) -> aux ctx s ; aux ((n, C.Decl s)::ctx) t | C.LetIn (n,s,t) -> aux ctx s ; aux ((n, C.Def s)::ctx) t | C.Appl l -> List.iter (aux ctx) l | C.Const _ -> () | C.Abst _ -> assert false | C.MutInd _ | C.MutConstruct _ -> () | C.MutCase (_,_,_,outt,t,pl) -> aux ctx outt ; aux ctx t; List.iter (aux ctx) pl | C.Fix (_,ifl) -> let counter = ref 0 in let ctx' = List.rev_map (function (name,_,ty,bo) -> let res = (C.Name name, C.Def (C.Fix (!counter,ifl))) in incr counter ; res ) ifl @ ctx in List.iter (function (_,_,ty,bo) -> aux ctx ty ; aux ctx' bo) ifl | C.CoFix (_,ifl) -> let counter = ref 0 in let ctx' = List.rev_map (function (name,ty,bo) -> let res = (C.Name name, C.Def (C.CoFix (!counter,ifl))) in incr counter ; res ) ifl @ ctx in List.iter (function (_,ty,bo) -> aux ctx ty ; aux ctx' bo) ifl in try aux [] term ; assert false (* No occurrences found. *) with Found context -> context ;; exception NotImplemented;; let acic_object_of_cic_object obj = let module C = Cic in let ids_to_terms = Hashtbl.create 503 in let ids_to_father_ids = Hashtbl.create 503 in let ids_to_inner_sorts = Hashtbl.create 503 in let ids_to_inner_types = Hashtbl.create 503 in let seed = ref 0 in let acic_term_of_cic_term_env' = acic_of_cic_env' seed ids_to_terms ids_to_father_ids ids_to_inner_sorts ids_to_inner_types in let acic_term_of_cic_term' = acic_term_of_cic_term_env' [] [] in let aobj = match obj with C.Definition (id,bo,ty,params) -> let abo = acic_term_of_cic_term' bo in let aty = acic_term_of_cic_term' ty in C.ADefinition ("mettereaposto",id,abo,aty,(Cic.Actual params)) | C.Axiom (id,ty,params) -> raise NotImplemented | C.Variable (id,bo,ty) -> raise NotImplemented | C.CurrentProof (id,conjectures,bo,ty) -> let aconjectures = List.map (function (i,term) -> let context = get_context_of_meta i bo in let aterm = acic_term_of_cic_term_env' conjectures context term in (i, aterm)) conjectures in let abo = acic_term_of_cic_term_env' conjectures [] bo in let aty = acic_term_of_cic_term_env' conjectures [] ty in C.ACurrentProof ("mettereaposto",id,aconjectures,abo,aty) | C.InductiveDefinition (tys,params,paramsno) -> raise NotImplemented in aobj,ids_to_terms,ids_to_father_ids,ids_to_inner_sorts,ids_to_inner_types ;;