(* Copyright (C) 2000, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://cs.unibo.it/helm/. *) exception NotImplemented;; type anntypes = {annsynthesized : Cic.annterm ; annexpected : Cic.annterm option} ;; let fresh_id seed ids_to_terms ids_to_father_ids = fun father t -> let res = "i" ^ string_of_int !seed in incr seed ; Hashtbl.add ids_to_father_ids res father ; Hashtbl.add ids_to_terms res t ; res ;; exception NotEnoughElements;; exception NameExpected;; (*CSC: cut&paste da cicPp.ml *) (* get_nth l n returns the nth element of the list l if it exists or *) (* raises NotEnoughElements if l has less than n elements *) let rec get_nth l n = match (n,l) with (1, he::_) -> he | (n, he::tail) when n > 1 -> get_nth tail (n-1) | (_,_) -> raise NotEnoughElements ;; let acic_of_cic_context' seed ids_to_terms ids_to_father_ids ids_to_inner_sorts ids_to_inner_types metasenv context t expectedty = let module D = DoubleTypeInference in let module T = CicTypeChecker in let module C = Cic in let fresh_id' = fresh_id seed ids_to_terms ids_to_father_ids in let terms_to_types = D.double_type_of metasenv context t expectedty in let rec aux computeinnertypes father context tt = let fresh_id'' = fresh_id' father tt in (*CSC: computeinnertypes era true, il che e' proprio sbagliato, no? *) let aux' = aux computeinnertypes (Some fresh_id'') in (* First of all we compute the inner type and the inner sort *) (* of the term. They may be useful in what follows. *) (*CSC: This is a very inefficient way of computing inner types *) (*CSC: and inner sorts: very deep terms have their types/sorts *) (*CSC: computed again and again. *) let string_of_sort t = match CicReduction.whd context t with C.Sort C.Prop -> "Prop" | C.Sort C.Set -> "Set" | C.Sort C.Type -> "Type" | _ -> assert false in let ainnertypes,innertype,innersort,expected_available = (*CSC: Here we need the algorithm for Coscoy's double type-inference *) (*CSC: (expected type + inferred type). Just for now we use the usual *) (*CSC: type-inference, but the result is very poor. As a very weak *) (*CSC: patch, I apply whd to the computed type. Full beta *) (*CSC: reduction would be a much better option. *) let {D.synthesized = synthesized; D.expected = expected} = if computeinnertypes then D.CicHash.find terms_to_types tt else (* We are already in an inner-type and Coscoy's double *) (* type inference algorithm has not been applied. *) {D.synthesized = CicReduction.whd context (T.type_of_aux' metasenv context tt) ; D.expected = None} in let innersort = T.type_of_aux' metasenv context synthesized in let ainnertypes,expected_available = if computeinnertypes then let annexpected,expected_available = match expected with None -> None,false | Some expectedty' -> Some (aux false (Some fresh_id'') context expectedty'),true in Some {annsynthesized = aux false (Some fresh_id'') context synthesized ; annexpected = annexpected }, expected_available else None,false in ainnertypes,synthesized, string_of_sort innersort, expected_available in let add_inner_type id = match ainnertypes with None -> () | Some ainnertypes -> Hashtbl.add ids_to_inner_types id ainnertypes in match tt with C.Rel n -> let id = match get_nth context n with (Some (C.Name s,_)) -> s | _ -> raise NameExpected in Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; if innersort = "Prop" && expected_available then add_inner_type fresh_id'' ; C.ARel (fresh_id'', n, id) | C.Var uri -> Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; if innersort = "Prop" && expected_available then add_inner_type fresh_id'' ; C.AVar (fresh_id'', uri) | C.Meta (n,l) -> let (_,canonical_context,_) = List.find (function (m,_,_) -> n = m) metasenv in Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; if innersort = "Prop" && expected_available then add_inner_type fresh_id'' ; C.AMeta (fresh_id'', n, (List.map2 (fun ct t -> match (ct, t) with | None, _ -> None | _, Some t -> Some (aux' context t) | Some _, None -> assert false (* due to typing rules *)) canonical_context l)) | C.Sort s -> C.ASort (fresh_id'', s) | C.Implicit -> C.AImplicit (fresh_id'') | C.Cast (v,t) -> Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; if innersort = "Prop" then add_inner_type fresh_id'' ; C.ACast (fresh_id'', aux' context v, aux' context t) | C.Prod (n,s,t) -> Hashtbl.add ids_to_inner_sorts fresh_id'' (string_of_sort innertype) ; C.AProd (fresh_id'', n, aux' context s, aux' ((Some (n, C.Decl s))::context) t) | C.Lambda (n,s,t) -> Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; if innersort = "Prop" then begin let father_is_lambda = match father with None -> false | Some father' -> match Hashtbl.find ids_to_terms father' with C.Lambda _ -> true | _ -> false in if (not father_is_lambda) || expected_available then add_inner_type fresh_id'' end ; C.ALambda (fresh_id'',n, aux' context s, aux' ((Some (n, C.Decl s)::context)) t) | C.LetIn (n,s,t) -> Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; if innersort = "Prop" then add_inner_type fresh_id'' ; C.ALetIn (fresh_id'', n, aux' context s, aux' ((Some (n, C.Def s))::context) t) | C.Appl l -> Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; if innersort = "Prop" then add_inner_type fresh_id'' ; C.AAppl (fresh_id'', List.map (aux' context) l) | C.Const (uri,cn) -> Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; if innersort = "Prop" && expected_available then add_inner_type fresh_id'' ; C.AConst (fresh_id'', uri, cn) | C.MutInd (uri,cn,tyno) -> C.AMutInd (fresh_id'', uri, cn, tyno) | C.MutConstruct (uri,cn,tyno,consno) -> Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; if innersort = "Prop" && expected_available then add_inner_type fresh_id'' ; C.AMutConstruct (fresh_id'', uri, cn, tyno, consno) | C.MutCase (uri, cn, tyno, outty, term, patterns) -> Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; if innersort = "Prop" then add_inner_type fresh_id'' ; C.AMutCase (fresh_id'', uri, cn, tyno, aux' context outty, aux' context term, List.map (aux' context) patterns) | C.Fix (funno, funs) -> let tys = List.map (fun (name,_,ty,_) -> Some (C.Name name, C.Decl ty)) funs in Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; if innersort = "Prop" then add_inner_type fresh_id'' ; C.AFix (fresh_id'', funno, List.map (fun (name, indidx, ty, bo) -> (name, indidx, aux' context ty, aux' (tys@context) bo) ) funs ) | C.CoFix (funno, funs) -> let tys = List.map (fun (name,ty,_) -> Some (C.Name name, C.Decl ty)) funs in Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; if innersort = "Prop" then add_inner_type fresh_id'' ; C.ACoFix (fresh_id'', funno, List.map (fun (name, ty, bo) -> (name, aux' context ty, aux' (tys@context) bo) ) funs ) in aux true None context t ;; let acic_of_cic_context metasenv context t = let ids_to_terms = Hashtbl.create 503 in let ids_to_father_ids = Hashtbl.create 503 in let ids_to_inner_sorts = Hashtbl.create 503 in let ids_to_inner_types = Hashtbl.create 503 in let seed = ref 0 in acic_of_cic_context' seed ids_to_terms ids_to_father_ids ids_to_inner_sorts ids_to_inner_types metasenv context t, ids_to_terms, ids_to_father_ids, ids_to_inner_sorts, ids_to_inner_types ;; let acic_object_of_cic_object obj = let module C = Cic in let ids_to_terms = Hashtbl.create 503 in let ids_to_father_ids = Hashtbl.create 503 in let ids_to_inner_sorts = Hashtbl.create 503 in let ids_to_inner_types = Hashtbl.create 503 in let ids_to_conjectures = Hashtbl.create 11 in let ids_to_hypotheses = Hashtbl.create 127 in let hypotheses_seed = ref 0 in let conjectures_seed = ref 0 in let seed = ref 0 in let acic_term_of_cic_term_context' = acic_of_cic_context' seed ids_to_terms ids_to_father_ids ids_to_inner_sorts ids_to_inner_types in let acic_term_of_cic_term' = acic_term_of_cic_term_context' [] [] in let aobj = match obj with C.Definition (id,bo,ty,params) -> let abo = acic_term_of_cic_term' bo (Some ty) in let aty = acic_term_of_cic_term' ty None in C.ADefinition ("mettereaposto",id,abo,aty,(Cic.Actual params)) | C.Axiom (id,ty,params) -> raise NotImplemented | C.Variable (id,bo,ty) -> raise NotImplemented | C.CurrentProof (id,conjectures,bo,ty) -> let aconjectures = List.map (function (i,canonical_context,term) as conjecture -> let cid = "c" ^ string_of_int !conjectures_seed in Hashtbl.add ids_to_conjectures cid conjecture ; incr conjectures_seed ; let acanonical_context = let rec aux = function [] -> [] | hyp::tl -> let hid = "h" ^ string_of_int !hypotheses_seed in Hashtbl.add ids_to_hypotheses hid hyp ; incr hypotheses_seed ; match hyp with (Some (n,C.Decl t)) -> let at = acic_term_of_cic_term_context' conjectures tl t None in (hid,Some (n,C.ADecl at))::(aux tl) | (Some (n,C.Def t)) -> let at = acic_term_of_cic_term_context' conjectures tl t None in (hid,Some (n,C.ADef at))::(aux tl) | None -> (hid,None)::(aux tl) in aux canonical_context in let aterm = acic_term_of_cic_term_context' conjectures canonical_context term None in (cid,i,acanonical_context,aterm) ) conjectures in let abo = acic_term_of_cic_term_context' conjectures [] bo (Some ty) in let aty = acic_term_of_cic_term_context' conjectures [] ty None in C.ACurrentProof ("mettereaposto",id,aconjectures,abo,aty) | C.InductiveDefinition (tys,params,paramsno) -> raise NotImplemented in aobj,ids_to_terms,ids_to_father_ids,ids_to_inner_sorts,ids_to_inner_types, ids_to_conjectures,ids_to_hypotheses ;;