(* Copyright (C) 2002, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://cs.unibo.it/helm/. *) open ProofEngineHelpers open ProofEngineTypes exception NotAnInductiveTypeToEliminate exception NotTheRightEliminatorShape exception NoHypothesesFound (* TODO problemone del fresh_name, aggiungerlo allo status? *) let fresh_name () = "FOO" (* lambda_abstract newmeta ty *) (* returns a triple [bo],[context],[ty'] where *) (* [ty] = Pi/LetIn [context].[ty'] ([context] is a vector!) *) (* and [bo] = Lambda/LetIn [context].(Meta [newmeta]) *) (* So, lambda_abstract is the core of the implementation of *) (* the Intros tactic. *) let lambda_abstract context newmeta ty name = let module C = Cic in let rec collect_context context = function C.Cast (te,_) -> collect_context context te | C.Prod (n,s,t) -> let n' = match n with C.Name _ -> n (*CSC: generatore di nomi? Chiedere il nome? *) | C.Anonimous -> C.Name name in let (context',ty,bo) = collect_context ((Some (n',(C.Decl s)))::context) t in (context',ty,C.Lambda(n',s,bo)) | C.LetIn (n,s,t) -> let (context',ty,bo) = collect_context ((Some (n,(C.Def s)))::context) t in (context',ty,C.LetIn(n,s,bo)) | _ as t -> let irl = identity_relocation_list_for_metavariable context in context, t, (C.Meta (newmeta,irl)) in collect_context context ty let eta_expand metasenv context t arg = let module T = CicTypeChecker in let module S = CicSubstitution in let module C = Cic in let rec aux n = function t' when t' = S.lift n arg -> C.Rel (1 + n) | C.Rel m -> if m <= n then C.Rel m else C.Rel (m+1) | C.Var _ | C.Meta _ | C.Sort _ | C.Implicit as t -> t | C.Cast (te,ty) -> C.Cast (aux n te, aux n ty) | C.Prod (nn,s,t) -> C.Prod (nn, aux n s, aux (n+1) t) | C.Lambda (nn,s,t) -> C.Lambda (nn, aux n s, aux (n+1) t) | C.LetIn (nn,s,t) -> C.LetIn (nn, aux n s, aux (n+1) t) | C.Appl l -> C.Appl (List.map (aux n) l) | C.Const _ as t -> t | C.MutInd _ | C.MutConstruct _ as t -> t | C.MutCase (sp,cookingsno,i,outt,t,pl) -> C.MutCase (sp,cookingsno,i,aux n outt, aux n t, List.map (aux n) pl) | C.Fix (i,fl) -> let tylen = List.length fl in let substitutedfl = List.map (fun (name,i,ty,bo) -> (name, i, aux n ty, aux (n+tylen) bo)) fl in C.Fix (i, substitutedfl) | C.CoFix (i,fl) -> let tylen = List.length fl in let substitutedfl = List.map (fun (name,ty,bo) -> (name, aux n ty, aux (n+tylen) bo)) fl in C.CoFix (i, substitutedfl) in let argty = T.type_of_aux' metasenv context arg in (C.Appl [C.Lambda ((C.Name "dummy"),argty,aux 0 t) ; arg]) (*CSC: The call to the Intros tactic is embedded inside the code of the *) (*CSC: Elim tactic. Do we already need tacticals? *) (* Auxiliary function for apply: given a type (a backbone), it returns its *) (* head, a META environment in which there is new a META for each hypothesis,*) (* a list of arguments for the new applications and the indexes of the first *) (* and last new METAs introduced. The nth argument in the list of arguments *) (* is the nth new META lambda-abstracted as much as possible. Hence, this *) (* functions already provides the behaviour of Intros on the new goals. *) let new_metasenv_for_apply_intros proof context ty = let module C = Cic in let module S = CicSubstitution in let rec aux newmeta = function C.Cast (he,_) -> aux newmeta he | C.Prod (name,s,t) -> let newcontext,ty',newargument = lambda_abstract context newmeta s (fresh_name ()) in let (res,newmetasenv,arguments,lastmeta) = aux (newmeta + 1) (S.subst newargument t) in res,(newmeta,newcontext,ty')::newmetasenv,newargument::arguments,lastmeta | t -> t,[],[],newmeta in let newmeta = new_meta ~proof in (* WARNING: here we are using the invariant that above the most *) (* recente new_meta() there are no used metas. *) let (res,newmetasenv,arguments,lastmeta) = aux newmeta ty in res,newmetasenv,arguments,newmeta,lastmeta (*CSC: ma serve solamente la prima delle new_uninst e l'unione delle due!!! *) let classify_metas newmeta in_subst_domain subst_in metasenv = List.fold_right (fun (i,canonical_context,ty) (old_uninst,new_uninst) -> if in_subst_domain i then old_uninst,new_uninst else let ty' = subst_in canonical_context ty in let canonical_context' = List.fold_right (fun entry canonical_context' -> let entry' = match entry with Some (n,Cic.Decl s) -> Some (n,Cic.Decl (subst_in canonical_context' s)) | Some (n,Cic.Def s) -> Some (n,Cic.Def (subst_in canonical_context' s)) | None -> None in entry'::canonical_context' ) canonical_context [] in if i < newmeta then ((i,canonical_context',ty')::old_uninst),new_uninst else old_uninst,((i,canonical_context',ty')::new_uninst) ) metasenv ([],[]) (* Auxiliary function for apply: given a type (a backbone), it returns its *) (* head, a META environment in which there is new a META for each hypothesis,*) (* a list of arguments for the new applications and the indexes of the first *) (* and last new METAs introduced. The nth argument in the list of arguments *) (* is just the nth new META. *) let new_metasenv_for_apply proof context ty = let module C = Cic in let module S = CicSubstitution in let rec aux newmeta = function C.Cast (he,_) -> aux newmeta he | C.Prod (name,s,t) -> let irl = identity_relocation_list_for_metavariable context in let newargument = C.Meta (newmeta,irl) in let (res,newmetasenv,arguments,lastmeta) = aux (newmeta + 1) (S.subst newargument t) in res,(newmeta,context,s)::newmetasenv,newargument::arguments,lastmeta | t -> t,[],[],newmeta in let newmeta = new_meta ~proof in (* WARNING: here we are using the invariant that above the most *) (* recente new_meta() there are no used metas. *) let (res,newmetasenv,arguments,lastmeta) = aux newmeta ty in res,newmetasenv,arguments,newmeta,lastmeta let apply_tac ~term ~status:(proof, goal) = (* Assumption: The term "term" must be closed in the current context *) let module T = CicTypeChecker in let module R = CicReduction in let module C = Cic in let (_,metasenv,_,_) = proof in let metano,context,ty = List.find (function (m,_,_) -> m=goal) metasenv in let termty = CicTypeChecker.type_of_aux' metasenv context term in (* newmeta is the lowest index of the new metas introduced *) let (consthead,newmetas,arguments,newmeta,_) = new_metasenv_for_apply proof context termty in let newmetasenv = newmetas@metasenv in let subst,newmetasenv' = CicUnification.fo_unif newmetasenv context consthead ty in let in_subst_domain i = List.exists (function (j,_) -> i=j) subst in let apply_subst = CicUnification.apply_subst subst in let old_uninstantiatedmetas,new_uninstantiatedmetas = (* subst_in doesn't need the context. Hence the underscore. *) let subst_in _ = CicUnification.apply_subst subst in classify_metas newmeta in_subst_domain subst_in newmetasenv' in let bo' = if List.length newmetas = 0 then term else let arguments' = List.map apply_subst arguments in Cic.Appl (term::arguments') in let newmetasenv'' = new_uninstantiatedmetas@old_uninstantiatedmetas in let (newproof, newmetasenv''') = let subst_in = CicUnification.apply_subst ((metano,bo')::subst) in subst_meta_and_metasenv_in_proof proof metano subst_in newmetasenv'' in (newproof, List.map (function (i,_,_) -> i) new_uninstantiatedmetas) (* TODO per implementare i tatticali e' necessario che tutte le tattiche sollevino _solamente_ Fail *) let apply_tac ~term ~status = try apply_tac ~term ~status (* TODO cacciare anche altre eccezioni? *) with CicUnification.UnificationFailed as e -> raise (Fail (Printexc.to_string e)) let intros_tac ~name ~status:(proof, goal) = let module C = Cic in let module R = CicReduction in let (_,metasenv,_,_) = proof in let metano,context,ty = List.find (function (m,_,_) -> m=goal) metasenv in let newmeta = new_meta ~proof in let (context',ty',bo') = lambda_abstract context newmeta ty name in let (newproof, _) = subst_meta_in_proof proof metano bo' [newmeta,context',ty'] in (newproof, [newmeta]) let cut_tac ~term ~status:(proof, goal) = let module C = Cic in let curi,metasenv,pbo,pty = proof in let metano,context,ty = List.find (function (m,_,_) -> m=goal) metasenv in let newmeta1 = new_meta ~proof in let newmeta2 = newmeta1 + 1 in let context_for_newmeta1 = (Some (C.Name "dummy_for_cut",C.Decl term))::context in let irl1 = identity_relocation_list_for_metavariable context_for_newmeta1 in let irl2 = identity_relocation_list_for_metavariable context in let newmeta1ty = CicSubstitution.lift 1 ty in let bo' = C.Appl [C.Lambda (C.Name "dummy_for_cut",term,C.Meta (newmeta1,irl1)) ; C.Meta (newmeta2,irl2)] in let (newproof, _) = subst_meta_in_proof proof metano bo' [newmeta2,context,term; newmeta1,context_for_newmeta1,newmeta1ty]; in (newproof, [newmeta1 ; newmeta2]) let letin_tac ~term ~status:(proof, goal) = let module C = Cic in let curi,metasenv,pbo,pty = proof in let metano,context,ty = List.find (function (m,_,_) -> m=goal) metasenv in let _ = CicTypeChecker.type_of_aux' metasenv context term in let newmeta = new_meta ~proof in let context_for_newmeta = (Some (C.Name "dummy_for_letin",C.Def term))::context in let irl = identity_relocation_list_for_metavariable context_for_newmeta in let newmetaty = CicSubstitution.lift 1 ty in let bo' = C.LetIn (C.Name "dummy_for_letin",term,C.Meta (newmeta,irl)) in let (newproof, _) = subst_meta_in_proof proof metano bo'[newmeta,context_for_newmeta,newmetaty] in (newproof, [newmeta]) (** functional part of the "exact" tactic *) let exact_tac ~term ~status:(proof, goal) = (* Assumption: the term bo must be closed in the current context *) let (_,metasenv,_,_) = proof in let metano,context,ty = List.find (function (m,_,_) -> m=goal) metasenv in let module T = CicTypeChecker in let module R = CicReduction in if R.are_convertible context (T.type_of_aux' metasenv context term) ty then begin let (newproof, metasenv') = subst_meta_in_proof proof metano term [] in (newproof, []) end else raise (Fail "The type of the provided term is not the one expected.") (* not really "primite" tactics .... *) let elim_intros_simpl_tac ~term ~status:(proof, goal) = let module T = CicTypeChecker in let module U = UriManager in let module R = CicReduction in let module C = Cic in let (curi,metasenv,_,_) = proof in let metano,context,ty = List.find (function (m,_,_) -> m=goal) metasenv in let termty = T.type_of_aux' metasenv context term in let uri,cookingno,typeno,args = match termty with C.MutInd (uri,cookingno,typeno) -> (uri,cookingno,typeno,[]) | C.Appl ((C.MutInd (uri,cookingno,typeno))::args) -> (uri,cookingno,typeno,args) | _ -> prerr_endline ("MALFATTORE" ^ (CicPp.ppterm termty)); flush stderr; raise NotAnInductiveTypeToEliminate in let eliminator_uri = let buri = U.buri_of_uri uri in let name = match CicEnvironment.get_cooked_obj uri cookingno with C.InductiveDefinition (tys,_,_) -> let (name,_,_,_) = List.nth tys typeno in name | _ -> assert false in let ext = match T.type_of_aux' metasenv context ty with C.Sort C.Prop -> "_ind" | C.Sort C.Set -> "_rec" | C.Sort C.Type -> "_rect" | _ -> assert false in U.uri_of_string (buri ^ "/" ^ name ^ ext ^ ".con") in let eliminator_cookingno = UriManager.relative_depth curi eliminator_uri 0 in let eliminator_ref = C.Const (eliminator_uri,eliminator_cookingno) in let ety = T.type_of_aux' [] [] eliminator_ref in let (econclusion,newmetas,arguments,newmeta,lastmeta) = (* new_metasenv_for_apply context ety *) new_metasenv_for_apply_intros proof context ety in (* Here we assume that we have only one inductive hypothesis to *) (* eliminate and that it is the last hypothesis of the theorem. *) (* A better approach would be fingering the hypotheses in some *) (* way. *) let meta_of_corpse = let (_,canonical_context,_) = List.find (function (m,_,_) -> m=(lastmeta - 1)) newmetas in let irl = identity_relocation_list_for_metavariable canonical_context in Cic.Meta (lastmeta - 1, irl) in let newmetasenv = newmetas @ metasenv in let subst1,newmetasenv' = CicUnification.fo_unif newmetasenv context term meta_of_corpse in let ueconclusion = CicUnification.apply_subst subst1 econclusion in (* The conclusion of our elimination principle is *) (* (?i farg1 ... fargn) *) (* The conclusion of our goal is ty. So, we can *) (* eta-expand ty w.r.t. farg1 .... fargn to get *) (* a new ty equal to (P farg1 ... fargn). Now *) (* ?i can be instantiated with P and we are ready *) (* to refine the term. *) let emeta, fargs = match ueconclusion with (*CSC: Code to be used for Apply C.Appl ((C.Meta (emeta,_))::fargs) -> emeta,fargs | C.Meta (emeta,_) -> emeta,[] *) (*CSC: Code to be used for ApplyIntros *) C.Appl (he::fargs) -> let rec find_head = function C.Meta (emeta,_) -> emeta | C.Lambda (_,_,t) -> find_head t | C.LetIn (_,_,t) -> find_head t | _ ->raise NotTheRightEliminatorShape in find_head he,fargs | C.Meta (emeta,_) -> emeta,[] (* *) | _ -> raise NotTheRightEliminatorShape in let ty' = CicUnification.apply_subst subst1 ty in let eta_expanded_ty = (*CSC: newmetasenv' era metasenv ??????????? *) List.fold_left (eta_expand newmetasenv' context) ty' fargs in let subst2,newmetasenv'' = (*CSC: passo newmetasenv', ma alcune variabili sono gia' state sostituite da subst1!!!! Dovrei rimuoverle o sono innocue?*) CicUnification.fo_unif newmetasenv' context ueconclusion eta_expanded_ty in let in_subst_domain i = let eq_to_i = function (j,_) -> i=j in List.exists eq_to_i subst1 || List.exists eq_to_i subst2 in (*CSC: codice per l'elim (* When unwinding the META that corresponds to the elimination *) (* predicate (which is emeta), we must also perform one-step *) (* beta-reduction. apply_subst doesn't need the context. Hence *) (* the underscore. *) let apply_subst _ t = let t' = CicUnification.apply_subst subst1 t in CicUnification.apply_subst_reducing subst2 (Some (emeta,List.length fargs)) t' in *) (*CSC: codice per l'elim_intros_simpl. Non effettua semplificazione. *) let apply_subst context t = let t' = CicUnification.apply_subst (subst1@subst2) t in ProofEngineReduction.simpl context t' in (* *) let old_uninstantiatedmetas,new_uninstantiatedmetas = classify_metas newmeta in_subst_domain apply_subst newmetasenv'' in let arguments' = List.map (apply_subst context) arguments in let bo' = Cic.Appl (eliminator_ref::arguments') in let newmetasenv''' = new_uninstantiatedmetas@old_uninstantiatedmetas in let (newproof, newmetasenv'''') = (* When unwinding the META that corresponds to the *) (* elimination predicate (which is emeta), we must *) (* also perform one-step beta-reduction. *) (* The only difference w.r.t. apply_subst is that *) (* we also substitute metano with bo'. *) (*CSC: Nota: sostituire nuovamente subst1 e' superfluo, *) (*CSC: no? *) (*CSC: codice per l'elim let apply_subst' t = let t' = CicUnification.apply_subst subst1 t in CicUnification.apply_subst_reducing ((metano,bo')::subst2) (Some (emeta,List.length fargs)) t' in *) (*CSC: codice per l'elim_intros_simpl *) let apply_subst' t = CicUnification.apply_subst ((metano,bo')::(subst1@subst2)) t in (* *) subst_meta_and_metasenv_in_proof proof metano apply_subst' newmetasenv''' in (newproof, List.map (function (i,_,_) -> i) new_uninstantiatedmetas)