(* Copyright (C) 2005, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://helm.cs.unibo.it/ *) open Printf open MatitaTypes exception Drop;; exception UnableToInclude of string exception IncludedFileNotCompiled of string let debug = false ;; let debug_print = if debug then prerr_endline else ignore ;; type options = { do_heavy_checks: bool ; include_paths: string list ; clean_baseuri: bool } type statement = (CicNotationPt.term, CicNotationPt.term, GrafiteAst.reduction, GrafiteAst.obj, string) GrafiteAst.statement (** create a ProofEngineTypes.mk_fresh_name_type function which uses given * names as long as they are available, then it fallbacks to name generation * using FreshNamesGenerator module *) let namer_of names = let len = List.length names in let count = ref 0 in fun metasenv context name ~typ -> if !count < len then begin let name = Cic.Name (List.nth names !count) in incr count; name end else FreshNamesGenerator.mk_fresh_name ~subst:[] metasenv context name ~typ let tactic_of_ast ast = let module PET = ProofEngineTypes in match ast with | GrafiteAst.Absurd (_, term) -> Tactics.absurd term | GrafiteAst.Apply (_, term) -> Tactics.apply term | GrafiteAst.Assumption _ -> Tactics.assumption | GrafiteAst.Auto (_,depth,width,paramodulation,full) -> AutoTactic.auto_tac ?depth ?width ?paramodulation ?full ~dbd:(MatitaDb.instance ()) () | GrafiteAst.Change (_, pattern, with_what) -> Tactics.change ~pattern with_what | GrafiteAst.Clear (_,id) -> Tactics.clear id | GrafiteAst.ClearBody (_,id) -> Tactics.clearbody id | GrafiteAst.Contradiction _ -> Tactics.contradiction | GrafiteAst.Compare (_, term) -> Tactics.compare term | GrafiteAst.Constructor (_, n) -> Tactics.constructor n | GrafiteAst.Cut (_, ident, term) -> let names = match ident with None -> [] | Some id -> [id] in Tactics.cut ~mk_fresh_name_callback:(namer_of names) term | GrafiteAst.DecideEquality _ -> Tactics.decide_equality | GrafiteAst.Decompose (_, types, what, names) -> let to_type = function | GrafiteAst.Type (uri, typeno) -> uri, typeno | GrafiteAst.Ident _ -> assert false in let user_types = List.rev_map to_type types in let dbd = MatitaDb.instance () in let mk_fresh_name_callback = namer_of names in Tactics.decompose ~mk_fresh_name_callback ~dbd ~user_types what | GrafiteAst.Discriminate (_,term) -> Tactics.discriminate term | GrafiteAst.Elim (_, what, using, depth, names) -> Tactics.elim_intros ?using ?depth ~mk_fresh_name_callback:(namer_of names) what | GrafiteAst.ElimType (_, what, using, depth, names) -> Tactics.elim_type ?using ?depth ~mk_fresh_name_callback:(namer_of names) what | GrafiteAst.Exact (_, term) -> Tactics.exact term | GrafiteAst.Exists _ -> Tactics.exists | GrafiteAst.Fail _ -> Tactics.fail | GrafiteAst.Fold (_, reduction_kind, term, pattern) -> let reduction = match reduction_kind with | `Normalize -> PET.const_lazy_reduction (CicReduction.normalize ~delta:false ~subst:[]) | `Reduce -> PET.const_lazy_reduction ProofEngineReduction.reduce | `Simpl -> PET.const_lazy_reduction ProofEngineReduction.simpl | `Unfold None -> PET.const_lazy_reduction (ProofEngineReduction.unfold ?what:None) | `Unfold (Some lazy_term) -> (fun context metasenv ugraph -> let what, metasenv, ugraph = lazy_term context metasenv ugraph in ProofEngineReduction.unfold ~what, metasenv, ugraph) | `Whd -> PET.const_lazy_reduction (CicReduction.whd ~delta:false ~subst:[]) in Tactics.fold ~reduction ~term ~pattern | GrafiteAst.Fourier _ -> Tactics.fourier | GrafiteAst.FwdSimpl (_, hyp, names) -> Tactics.fwd_simpl ~mk_fresh_name_callback:(namer_of names) ~dbd:(MatitaDb.instance ()) hyp | GrafiteAst.Generalize (_,pattern,ident) -> let names = match ident with None -> [] | Some id -> [id] in Tactics.generalize ~mk_fresh_name_callback:(namer_of names) pattern | GrafiteAst.Goal (_, n) -> Tactics.set_goal n | GrafiteAst.IdTac _ -> Tactics.id | GrafiteAst.Injection (_,term) -> Tactics.injection term | GrafiteAst.Intros (_, None, names) -> PrimitiveTactics.intros_tac ~mk_fresh_name_callback:(namer_of names) () | GrafiteAst.Intros (_, Some num, names) -> PrimitiveTactics.intros_tac ~howmany:num ~mk_fresh_name_callback:(namer_of names) () | GrafiteAst.LApply (_, how_many, to_what, what, ident) -> let names = match ident with None -> [] | Some id -> [id] in Tactics.lapply ~mk_fresh_name_callback:(namer_of names) ?how_many ~to_what what | GrafiteAst.Left _ -> Tactics.left | GrafiteAst.LetIn (loc,term,name) -> Tactics.letin term ~mk_fresh_name_callback:(namer_of [name]) | GrafiteAst.Reduce (_, reduction_kind, pattern) -> (match reduction_kind with | `Normalize -> Tactics.normalize ~pattern | `Reduce -> Tactics.reduce ~pattern | `Simpl -> Tactics.simpl ~pattern | `Unfold what -> Tactics.unfold ~pattern what | `Whd -> Tactics.whd ~pattern) | GrafiteAst.Reflexivity _ -> Tactics.reflexivity | GrafiteAst.Replace (_, pattern, with_what) -> Tactics.replace ~pattern ~with_what | GrafiteAst.Rewrite (_, direction, t, pattern) -> EqualityTactics.rewrite_tac ~direction ~pattern t | GrafiteAst.Right _ -> Tactics.right | GrafiteAst.Ring _ -> Tactics.ring | GrafiteAst.Split _ -> Tactics.split | GrafiteAst.Symmetry _ -> Tactics.symmetry | GrafiteAst.Transitivity (_, term) -> Tactics.transitivity term let singleton = function | [x], _ -> x | _ -> assert false let disambiguate_term status_ref term = let status = !status_ref in let (diff, metasenv, cic, _) = singleton (MatitaDisambiguator.disambiguate_term ~dbd:(MatitaDb.instance ()) ~aliases:status.aliases ~universe:(Some status.multi_aliases) ~context:(MatitaMisc.get_proof_context status) ~metasenv:(MatitaMisc.get_proof_metasenv status) term) in let status = MatitaTypes.set_metasenv metasenv status in let status = MatitaSync.set_proof_aliases status diff in status_ref := status; cic (** disambiguate_lazy_term (circa): term -> (unit -> status) * lazy_term * rationale: lazy_term will be invoked in different context to obtain a term, * each invocation will disambiguate the term and can add aliases. Once all * disambiguations have been performed, the first returned function can be * used to obtain the resulting aliases *) let disambiguate_lazy_term status_ref term = (fun context metasenv ugraph -> let status = !status_ref in let (diff, metasenv, cic, ugraph) = singleton (MatitaDisambiguator.disambiguate_term ~dbd:(MatitaDb.instance ()) ~initial_ugraph:ugraph ~aliases:status.aliases ~universe:(Some status.multi_aliases) ~context ~metasenv term) in let status = MatitaTypes.set_metasenv metasenv status in let status = MatitaSync.set_proof_aliases status diff in status_ref := status; cic, metasenv, ugraph) let disambiguate_pattern status_ref (wanted, hyp_paths, goal_path) = let interp path = Disambiguate.interpretate_path [] path in let goal_path = interp goal_path in let hyp_paths = List.map (fun (name, path) -> name, interp path) hyp_paths in let wanted = match wanted with None -> None | Some wanted -> let wanted = disambiguate_lazy_term status_ref wanted in Some wanted in (wanted, hyp_paths ,goal_path) let disambiguate_reduction_kind aliases_ref = function | `Unfold (Some t) -> let t = disambiguate_lazy_term aliases_ref t in `Unfold (Some t) | `Normalize | `Reduce | `Simpl | `Unfold None | `Whd as kind -> kind let disambiguate_tactic status tactic = let status_ref = ref status in let tactic = match tactic with | GrafiteAst.Absurd (loc, term) -> let cic = disambiguate_term status_ref term in GrafiteAst.Absurd (loc, cic) | GrafiteAst.Apply (loc, term) -> let cic = disambiguate_term status_ref term in GrafiteAst.Apply (loc, cic) | GrafiteAst.Assumption loc -> GrafiteAst.Assumption loc | GrafiteAst.Auto (loc,depth,width,paramodulation,full) -> GrafiteAst.Auto (loc,depth,width,paramodulation,full) | GrafiteAst.Change (loc, pattern, with_what) -> let with_what = disambiguate_lazy_term status_ref with_what in let pattern = disambiguate_pattern status_ref pattern in GrafiteAst.Change (loc, pattern, with_what) | GrafiteAst.Clear (loc,id) -> GrafiteAst.Clear (loc,id) | GrafiteAst.ClearBody (loc,id) -> GrafiteAst.ClearBody (loc,id) | GrafiteAst.Compare (loc,term) -> let term = disambiguate_term status_ref term in GrafiteAst.Compare (loc,term) | GrafiteAst.Constructor (loc,n) -> GrafiteAst.Constructor (loc,n) | GrafiteAst.Contradiction loc -> GrafiteAst.Contradiction loc | GrafiteAst.Cut (loc, ident, term) -> let cic = disambiguate_term status_ref term in GrafiteAst.Cut (loc, ident, cic) | GrafiteAst.DecideEquality loc -> GrafiteAst.DecideEquality loc | GrafiteAst.Decompose (loc, types, what, names) -> let disambiguate types = function | GrafiteAst.Type _ -> assert false | GrafiteAst.Ident id -> (match disambiguate_term status_ref (CicNotationPt.Ident (id, None)) with | Cic.MutInd (uri, tyno, _) -> (GrafiteAst.Type (uri, tyno) :: types) | _ -> raise Disambiguate.NoWellTypedInterpretation) in let types = List.fold_left disambiguate [] types in GrafiteAst.Decompose (loc, types, what, names) | GrafiteAst.Discriminate (loc,term) -> let term = disambiguate_term status_ref term in GrafiteAst.Discriminate(loc,term) | GrafiteAst.Exact (loc, term) -> let cic = disambiguate_term status_ref term in GrafiteAst.Exact (loc, cic) | GrafiteAst.Elim (loc, what, Some using, depth, idents) -> let what = disambiguate_term status_ref what in let using = disambiguate_term status_ref using in GrafiteAst.Elim (loc, what, Some using, depth, idents) | GrafiteAst.Elim (loc, what, None, depth, idents) -> let what = disambiguate_term status_ref what in GrafiteAst.Elim (loc, what, None, depth, idents) | GrafiteAst.ElimType (loc, what, Some using, depth, idents) -> let what = disambiguate_term status_ref what in let using = disambiguate_term status_ref using in GrafiteAst.ElimType (loc, what, Some using, depth, idents) | GrafiteAst.ElimType (loc, what, None, depth, idents) -> let what = disambiguate_term status_ref what in GrafiteAst.ElimType (loc, what, None, depth, idents) | GrafiteAst.Exists loc -> GrafiteAst.Exists loc | GrafiteAst.Fail loc -> GrafiteAst.Fail loc | GrafiteAst.Fold (loc,red_kind, term, pattern) -> let pattern = disambiguate_pattern status_ref pattern in let term = disambiguate_lazy_term status_ref term in let red_kind = disambiguate_reduction_kind status_ref red_kind in GrafiteAst.Fold (loc, red_kind, term, pattern) | GrafiteAst.FwdSimpl (loc, hyp, names) -> GrafiteAst.FwdSimpl (loc, hyp, names) | GrafiteAst.Fourier loc -> GrafiteAst.Fourier loc | GrafiteAst.Generalize (loc,pattern,ident) -> let pattern = disambiguate_pattern status_ref pattern in GrafiteAst.Generalize (loc,pattern,ident) | GrafiteAst.Goal (loc, g) -> GrafiteAst.Goal (loc, g) | GrafiteAst.IdTac loc -> GrafiteAst.IdTac loc | GrafiteAst.Injection (loc, term) -> let term = disambiguate_term status_ref term in GrafiteAst.Injection (loc,term) | GrafiteAst.Intros (loc, num, names) -> GrafiteAst.Intros (loc, num, names) | GrafiteAst.LApply (loc, depth, to_what, what, ident) -> let f term to_what = let term = disambiguate_term status_ref term in term :: to_what in let to_what = List.fold_right f to_what [] in let what = disambiguate_term status_ref what in GrafiteAst.LApply (loc, depth, to_what, what, ident) | GrafiteAst.Left loc -> GrafiteAst.Left loc | GrafiteAst.LetIn (loc, term, name) -> let term = disambiguate_term status_ref term in GrafiteAst.LetIn (loc,term,name) | GrafiteAst.Reduce (loc, red_kind, pattern) -> let pattern = disambiguate_pattern status_ref pattern in let red_kind = disambiguate_reduction_kind status_ref red_kind in GrafiteAst.Reduce(loc, red_kind, pattern) | GrafiteAst.Reflexivity loc -> GrafiteAst.Reflexivity loc | GrafiteAst.Replace (loc, pattern, with_what) -> let pattern = disambiguate_pattern status_ref pattern in let with_what = disambiguate_lazy_term status_ref with_what in GrafiteAst.Replace (loc, pattern, with_what) | GrafiteAst.Rewrite (loc, dir, t, pattern) -> let term = disambiguate_term status_ref t in let pattern = disambiguate_pattern status_ref pattern in GrafiteAst.Rewrite (loc, dir, term, pattern) | GrafiteAst.Right loc -> GrafiteAst.Right loc | GrafiteAst.Ring loc -> GrafiteAst.Ring loc | GrafiteAst.Split loc -> GrafiteAst.Split loc | GrafiteAst.Symmetry loc -> GrafiteAst.Symmetry loc | GrafiteAst.Transitivity (loc, term) -> let cic = disambiguate_term status_ref term in GrafiteAst.Transitivity (loc, cic) in status_ref, tactic let reorder_metasenv start refine tactic goals current_goal always_opens_a_goal= let module PEH = ProofEngineHelpers in (* phase one calculates: * new_goals_from_refine: goals added by refine * head_goal: the first goal opened by ythe tactic * other_goals: other goals opened by the tactic *) let new_goals_from_refine = PEH.compare_metasenvs start refine in let new_goals_from_tactic = PEH.compare_metasenvs refine tactic in let head_goal, other_goals, goals = match goals with | [] -> None,[],goals | hd::tl -> (* assert (List.mem hd new_goals_from_tactic); * invalidato dalla goal_tac * *) Some hd, List.filter ((<>) hd) new_goals_from_tactic, List.filter ((<>) hd) goals in let produced_goals = match head_goal with | None -> new_goals_from_refine @ other_goals | Some x -> x :: new_goals_from_refine @ other_goals in (* extract the metas generated by refine and tactic *) let metas_for_tactic_head = match head_goal with | None -> [] | Some head_goal -> List.filter (fun (n,_,_) -> n = head_goal) tactic in let metas_for_tactic_goals = List.map (fun x -> List.find (fun (metano,_,_) -> metano = x) tactic) goals in let metas_for_refine_goals = List.filter (fun (n,_,_) -> List.mem n new_goals_from_refine) tactic in let produced_metas, goals = let produced_metas = if always_opens_a_goal then metas_for_tactic_head @ metas_for_refine_goals @ metas_for_tactic_goals else metas_for_refine_goals @ metas_for_tactic_head @ metas_for_tactic_goals in let goals = List.map (fun (metano, _, _) -> metano) produced_metas in produced_metas, goals in (* residual metas, preserving the original order *) let before, after = let rec split e = function | [] -> [],[] | (metano, _, _) :: tl when metano = e -> [], List.map (fun (x,_,_) -> x) tl | (metano, _, _) :: tl -> let b, a = split e tl in metano :: b, a in let find n metasenv = try Some (List.find (fun (metano, _, _) -> metano = n) metasenv) with Not_found -> None in let extract l = List.fold_right (fun n acc -> match find n tactic with | Some x -> x::acc | None -> acc ) l [] in let before_l, after_l = split current_goal start in let before_l = List.filter (fun x -> not (List.mem x produced_goals)) before_l in let after_l = List.filter (fun x -> not (List.mem x produced_goals)) after_l in let before = extract before_l in let after = extract after_l in before, after in (* DEBUG CODE let print_m name metasenv = prerr_endline (">>>>> " ^ name); prerr_endline (CicMetaSubst.ppmetasenv metasenv []) in print_m "BEGIN" start; prerr_endline ("goal was: " ^ string_of_int current_goal); prerr_endline ("and metas from refine are:"); List.iter (fun t -> prerr_string (" " ^ string_of_int t)) new_goals_from_refine; prerr_endline ""; print_m "before" before; print_m "metas_for_tactic_head" metas_for_tactic_head; print_m "metas_for_refine_goals" metas_for_refine_goals; print_m "metas_for_tactic_goals" metas_for_tactic_goals; print_m "after" after; FINE DEBUG CODE *) before @ produced_metas @ after, goals (* maybe we only need special cases for apply and goal *) let classify_tactic tactic = match tactic with (* tactics that can't close the goal (return a goal we want to "select") *) | GrafiteAst.Rewrite _ | GrafiteAst.Split _ | GrafiteAst.Replace _ | GrafiteAst.Reduce _ | GrafiteAst.Injection _ | GrafiteAst.IdTac _ | GrafiteAst.Generalize _ | GrafiteAst.Elim _ | GrafiteAst.Decompose _ -> true, true (* tactics we don't want to reorder goals. I think only Goal needs this. *) | GrafiteAst.Goal _ -> false, true (* tactics like apply *) | _ -> true, false let apply_tactic tactic status = let starting_metasenv = MatitaMisc.get_proof_metasenv status in let status_ref, tactic = disambiguate_tactic status tactic in let metasenv_after_refinement = MatitaMisc.get_proof_metasenv !status_ref in let proof_status = MatitaMisc.get_proof_status !status_ref in let needs_reordering, always_opens_a_goal = classify_tactic tactic in let tactic = tactic_of_ast tactic in (* apply tactic will change the status pointed by status_ref ... *) let current_goal = let _, g = proof_status in g in let (proof, goals) = ProofEngineTypes.apply_tactic tactic proof_status in let proof, goals = if needs_reordering then let uri, metasenv_after_tactic, t, ty = proof in let reordered_metasenv, goals = reorder_metasenv starting_metasenv metasenv_after_refinement metasenv_after_tactic goals current_goal always_opens_a_goal in (uri, reordered_metasenv, t, ty), goals else proof, goals in let dummy = -1 in { !status_ref with proof_status = MatitaTypes.Incomplete_proof (proof,dummy) }, goals module MatitaStatus = struct type input_status = MatitaTypes.status type output_status = MatitaTypes.status * ProofEngineTypes.goal list type tactic = input_status -> output_status let focus (status,_) goal = let proof,_ = MatitaMisc.get_proof_status status in {status with proof_status = MatitaTypes.Incomplete_proof (proof,goal)} let goals (_,goals) = goals let set_goals (status,_) goals = status,goals let id_tac status = apply_tactic (GrafiteAst.IdTac DisambiguateTypes.dummy_floc) status let mk_tactic tac = tac let apply_tactic tac = tac end module MatitaTacticals = Tacticals.Make(MatitaStatus) let eval_tactical status tac = let rec tactical_of_ast tac = match tac with | GrafiteAst.Tactic (loc, tactic) -> apply_tactic tactic | GrafiteAst.Seq (loc, tacticals) -> (* tac1; tac2; ... *) MatitaTacticals.seq ~tactics:(List.map tactical_of_ast tacticals) | GrafiteAst.Do (loc, num, tactical) -> MatitaTacticals.do_tactic ~n:num ~tactic:(tactical_of_ast tactical) | GrafiteAst.Repeat (loc, tactical) -> MatitaTacticals.repeat_tactic ~tactic:(tactical_of_ast tactical) | GrafiteAst.Then (loc, tactical, tacticals) -> (* tac; [ tac1 | ... ] *) MatitaTacticals.thens ~start:(tactical_of_ast tactical) ~continuations:(List.map tactical_of_ast tacticals) | GrafiteAst.First (loc, tacticals) -> MatitaTacticals.first ~tactics:(List.map (fun t -> "", tactical_of_ast t) tacticals) | GrafiteAst.Try (loc, tactical) -> MatitaTacticals.try_tactic ~tactic:(tactical_of_ast tactical) | GrafiteAst.Solve (loc, tacticals) -> MatitaTacticals.solve_tactics ~tactics:(List.map (fun t -> "",tactical_of_ast t) tacticals) in let status,goals = tactical_of_ast tac status in let proof,_ = MatitaMisc.get_proof_status status in let new_status = match goals with | [] -> let (_,metasenv,_,_) = proof in (match metasenv with | [] -> Proof proof | (ng,_,_)::_ -> Incomplete_proof (proof,ng)) | ng::_ -> Incomplete_proof (proof, ng) in { status with proof_status = new_status } let eval_coercion status coercion = let coer_uri,coer_ty = match coercion with | Cic.Const (uri,_) | Cic.Var (uri,_) -> let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in (match o with | Cic.Constant (_,_,ty,_,_) | Cic.Variable (_,_,ty,_,_) -> uri,ty | _ -> assert false) | Cic.MutConstruct (uri,t,c,_) -> let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in (match o with | Cic.InductiveDefinition (l,_,_,_) -> let (_,_,_,cl) = List.nth l t in let (_,cty) = List.nth cl c in uri,cty | _ -> assert false) | _ -> assert false in (* we have to get the source and the tgt type uri * in Coq syntax we have already their names, but * since we don't support Funclass and similar I think * all the coercion should be of the form * (A:?)(B:?)T1->T2 * So we should be able to extract them from the coercion type *) let extract_last_two_p ty = let rec aux = function | Cic.Prod( _, src, Cic.Prod (n,t1,t2)) -> aux (Cic.Prod(n,t1,t2)) | Cic.Prod( _, src, tgt) -> src, tgt | _ -> assert false in aux ty in let ty_src,ty_tgt = extract_last_two_p coer_ty in let context = [] in let src_uri = let ty_src = CicReduction.whd context ty_src in CicUtil.uri_of_term ty_src in let tgt_uri = let ty_tgt = CicReduction.whd context ty_tgt in CicUtil.uri_of_term ty_tgt in let new_coercions = (* also adds them to the Db *) CoercGraph.close_coercion_graph src_uri tgt_uri coer_uri in let status = List.fold_left (fun s (uri,o,_) -> MatitaSync.add_obj uri o status) status new_coercions in let statement_of name = GrafiteAst.Coercion (DisambiguateTypes.dummy_floc, (CicNotationPt.Ident (name, None))) in let moo_content = statement_of (UriManager.name_of_uri coer_uri) :: (List.map (fun (uri, _, _) -> statement_of (UriManager.name_of_uri uri)) new_coercions) in let status = add_moo_content moo_content status in { status with proof_status = No_proof } let generate_elimination_principles uri status = let status' = ref status in let elim sort = try let uri,obj = CicElim.elim_of ~sort uri 0 in status' := MatitaSync.add_obj uri obj !status' with CicElim.Can_t_eliminate -> () in try List.iter elim [ Cic.Prop; Cic.Set; (Cic.Type (CicUniv.fresh ())) ]; !status' with exn -> MatitaSync.time_travel ~present:!status' ~past:status; raise exn let generate_projections uri fields status = let projections = CicRecord.projections_of uri fields in List.fold_left (fun status (uri, name, bo) -> try let ty, ugraph = CicTypeChecker.type_of_aux' [] [] bo CicUniv.empty_ugraph in let attrs = [`Class `Projection; `Generated] in let obj = Cic.Constant (name,Some bo,ty,[],attrs) in MatitaSync.add_obj uri obj status with CicTypeChecker.TypeCheckerFailure s -> MatitaLog.message ("Unable to create projection " ^ name ^ " cause: " ^ s); status | CicEnvironment.Object_not_found uri -> let depend = UriManager.name_of_uri uri in MatitaLog.message ("Unable to create projection " ^ name ^ " because it requires " ^ depend); status ) status projections (* to avoid a long list of recursive functions *) let eval_from_moo_ref = ref (fun _ _ _ -> assert false);; let disambiguate_obj status obj = let uri = match obj with GrafiteAst.Inductive (_,(name,_,_,_)::_) | GrafiteAst.Record (_,name,_,_) -> Some (UriManager.uri_of_string (MatitaMisc.qualify status name ^ ".ind")) | GrafiteAst.Inductive _ -> assert false | GrafiteAst.Theorem _ -> None in let (diff, metasenv, cic, _) = singleton (MatitaDisambiguator.disambiguate_obj ~dbd:(MatitaDb.instance ()) ~aliases:status.aliases ~universe:(Some status.multi_aliases) ~uri obj) in let proof_status = match status.proof_status with | No_proof -> Intermediate metasenv | Incomplete_proof _ | Proof _ -> command_error "imbricated proofs not allowed" | Intermediate _ -> assert false in let status = { status with proof_status = proof_status } in let status = MatitaSync.set_proof_aliases status diff in status, cic let disambiguate_command status = function | GrafiteAst.Alias _ | GrafiteAst.Default _ | GrafiteAst.Drop _ | GrafiteAst.Dump _ | GrafiteAst.Include _ | GrafiteAst.Interpretation _ | GrafiteAst.Metadata _ | GrafiteAst.Notation _ | GrafiteAst.Qed _ | GrafiteAst.Render _ | GrafiteAst.Set _ as cmd -> status,cmd | GrafiteAst.Coercion (loc, term) -> let status_ref = ref status in let term = disambiguate_term status_ref term in !status_ref, GrafiteAst.Coercion (loc,term) | GrafiteAst.Obj (loc,obj) -> let status,obj = disambiguate_obj status obj in status, GrafiteAst.Obj (loc,obj) let make_absolute paths path = if path = "coq.ma" then path else let rec aux = function | [] -> ignore (Unix.stat path); path | p :: tl -> let path = p ^ "/" ^ path in try ignore (Unix.stat path); path with Unix.Unix_error _ -> aux tl in try aux paths with Unix.Unix_error _ as exc -> raise (UnableToInclude path) ;; let eval_command opts status cmd = let status,cmd = disambiguate_command status cmd in let cmd,notation_ids' = CicNotation.process_notation cmd in let status = { status with notation_ids = notation_ids' @ status.notation_ids } in match cmd with | GrafiteAst.Default (loc, what, uris) as cmd -> LibraryObjects.set_default what uris; add_moo_content [cmd] status | GrafiteAst.Include (loc, path) -> let absolute_path = make_absolute opts.include_paths path in let moopath = MatitaMisc.obj_file_of_script absolute_path in let status = ref status in if not (Sys.file_exists moopath) then raise (IncludedFileNotCompiled moopath); !eval_from_moo_ref status moopath (fun _ _ -> ()); !status | GrafiteAst.Metadata (loc, m) -> (match m with | GrafiteAst.Dependency uri -> MatitaTypes.add_moo_metadata [m] status | GrafiteAst.Baseuri _ -> status) | GrafiteAst.Set (loc, name, value) -> let status = if name = "baseuri" then begin let value = let v = MatitaMisc.strip_trailing_slash value in try ignore (String.index v ' '); command_error "baseuri can't contain spaces" with Not_found -> v in if not (MatitaMisc.is_empty value) && opts.clean_baseuri then begin MatitaLog.warn ("baseuri " ^ value ^ " is not empty"); MatitaLog.message ("cleaning baseuri " ^ value); MatitacleanLib.clean_baseuris [value] end; add_moo_metadata [GrafiteAst.Baseuri value] status end else status in set_option status name value | GrafiteAst.Drop loc -> raise Drop | GrafiteAst.Qed loc -> let uri, metasenv, bo, ty = match status.proof_status with | Proof (Some uri, metasenv, body, ty) -> uri, metasenv, body, ty | Proof (None, metasenv, body, ty) -> command_error ("Someone allows to start a thm without giving the "^ "name/uri. This should be fixed!") | _-> command_error "You can't qed an uncomplete theorem" in let suri = UriManager.string_of_uri uri in if metasenv <> [] then command_error "Proof not completed! metasenv is not empty!"; let name = UriManager.name_of_uri uri in let obj = Cic.Constant (name,Some bo,ty,[],[]) in MatitaSync.add_obj uri obj status | GrafiteAst.Coercion (loc, coercion) -> eval_coercion status coercion | GrafiteAst.Alias (loc, spec) -> let diff = (*CSC: Warning: this code should be factorized with the corresponding code in DisambiguatePp *) match spec with | GrafiteAst.Ident_alias (id,uri) -> [DisambiguateTypes.Id id, (uri,(fun _ _ _-> CicUtil.term_of_uri(UriManager.uri_of_string uri)))] | GrafiteAst.Symbol_alias (symb, instance, desc) -> [DisambiguateTypes.Symbol (symb,instance), DisambiguateChoices.lookup_symbol_by_dsc symb desc] | GrafiteAst.Number_alias (instance,desc) -> [DisambiguateTypes.Num instance, DisambiguateChoices.lookup_num_by_dsc desc] in MatitaSync.set_proof_aliases status diff | GrafiteAst.Render _ -> assert false (* ZACK: to be removed *) | GrafiteAst.Dump _ -> assert false (* ZACK: to be removed *) | GrafiteAst.Interpretation (_, dsc, (symbol, _), cic_appl_pattern) as stm -> let status = add_moo_content [stm] status in let uris = List.map (fun uri -> GrafiteAst.Dependency (UriManager.buri_of_uri uri)) (CicNotationUtil.find_appl_pattern_uris cic_appl_pattern) in let diff = [DisambiguateTypes.Symbol (symbol, 0), DisambiguateChoices.lookup_symbol_by_dsc symbol dsc] in let status = MatitaSync.set_proof_aliases status diff in let status = MatitaTypes.add_moo_metadata uris status in status | GrafiteAst.Notation _ as stm -> add_moo_content [stm] status | GrafiteAst.Obj (loc,obj) -> let ext,name = match obj with Cic.Constant (name,_,_,_,_) | Cic.CurrentProof (name,_,_,_,_,_) -> ".con",name | Cic.InductiveDefinition (types,_,_,_) -> ".ind", (match types with (name,_,_,_)::_ -> name | _ -> assert false) | _ -> assert false in let uri = UriManager.uri_of_string (MatitaMisc.qualify status name ^ ext) in let metasenv = MatitaMisc.get_proof_metasenv status in match obj with | Cic.CurrentProof (_,metasenv',bo,ty,_,_) -> let name = UriManager.name_of_uri uri in if not(CicPp.check name ty) then MatitaLog.error ("Bad name: " ^ name); if opts.do_heavy_checks then begin let dbd = MatitaDb.instance () in let similar = MetadataQuery.match_term ~dbd ty in let similar_len = List.length similar in if similar_len> 30 then (MatitaLog.message ("Duplicate check will compare your theorem with " ^ string_of_int similar_len ^ " theorems, this may take a while.")); let convertible = List.filter ( fun u -> let t = CicUtil.term_of_uri u in let ty',g = CicTypeChecker.type_of_aux' metasenv' [] t CicUniv.empty_ugraph in fst(CicReduction.are_convertible [] ty' ty g)) similar in (match convertible with | [] -> () | x::_ -> MatitaLog.warn ("Theorem already proved: " ^ UriManager.string_of_uri x ^ "\nPlease use a variant.")); end; assert (metasenv = metasenv'); let goalno = match metasenv' with (goalno,_,_)::_ -> goalno | _ -> assert false in let initial_proof = (Some uri, metasenv, bo, ty) in { status with proof_status = Incomplete_proof (initial_proof,goalno)} | _ -> if metasenv <> [] then command_error ( "metasenv not empty while giving a definition with body: " ^ CicMetaSubst.ppmetasenv [] metasenv); let status' = ref status in (try status' := MatitaSync.add_obj uri obj !status'; (match obj with | Cic.Constant _ -> () | Cic.InductiveDefinition (_,_,_,attrs) -> status' := generate_elimination_principles uri !status'; let rec get_record_attrs = function | [] -> None | (`Class (`Record fields))::_ -> Some fields | _::tl -> get_record_attrs tl in (match get_record_attrs attrs with | None -> () (* not a record *) | Some fields -> status' := generate_projections uri fields !status') | Cic.CurrentProof _ | Cic.Variable _ -> assert false); !status' with exn -> MatitaSync.time_travel ~present:!status' ~past:status; raise exn) let eval_executable opts status ex = match ex with | GrafiteAst.Tactical (_, tac) -> eval_tactical status tac | GrafiteAst.Command (_, cmd) -> eval_command opts status cmd | GrafiteAst.Macro (_, mac) -> command_error (sprintf "The macro %s can't be in a script" (GrafiteAstPp.pp_macro_ast mac)) let eval_comment status c = status let eval_ast ?(do_heavy_checks=false) ?(include_paths=[]) ?(clean_baseuri=true) status st = let opts = { do_heavy_checks = do_heavy_checks ; include_paths = include_paths; clean_baseuri = clean_baseuri } in match st with | GrafiteAst.Executable (_,ex) -> eval_executable opts status ex | GrafiteAst.Comment (_,c) -> eval_comment status c let eval_from_moo ?do_heavy_checks ?include_paths ?clean_baseuri status fname cb = let ast_of_cmd cmd = GrafiteAst.Executable (DisambiguateTypes.dummy_floc, GrafiteAst.Command (DisambiguateTypes.dummy_floc, (GrafiteAst.reash_cmd_uris cmd))) in let moo, metadata = MatitaMoo.load_moo fname in List.iter (fun ast -> let ast = ast_of_cmd ast in cb !status ast; status := eval_ast ?do_heavy_checks ?include_paths ?clean_baseuri !status ast) moo; List.iter (fun m -> let ast = ast_of_cmd (GrafiteAst.Metadata (DisambiguateTypes.dummy_floc, m)) in cb !status ast; status := eval_ast ?do_heavy_checks ?include_paths ?clean_baseuri !status ast) metadata let eval_from_stream ?do_heavy_checks ?include_paths ?clean_baseuri status str cb = try while true do let ast = GrafiteParser.parse_statement str in cb !status ast; status := eval_ast ?do_heavy_checks ?include_paths ?clean_baseuri !status ast done with End_of_file -> () (* to avoid a long list of recursive functions *) let _ = eval_from_moo_ref := eval_from_moo let eval_from_stream_greedy ?do_heavy_checks ?include_paths ?clean_baseuri status str cb = while true do print_string "matita> "; flush stdout; let ast = GrafiteParser.parse_statement str in cb !status ast; status := eval_ast ?do_heavy_checks ?include_paths ?clean_baseuri !status ast done ;; let eval_string ?do_heavy_checks ?include_paths ?clean_baseuri status str = eval_from_stream ?do_heavy_checks ?include_paths ?clean_baseuri status (Ulexing.from_utf8_string str) (fun _ _ ->()) let default_options () = (* let options = StringMap.add "baseuri" (String (Helm_registry.get "matita.baseuri" ^ Helm_registry.get "matita.owner")) no_options in *) let options = StringMap.add "basedir" (String (Helm_registry.get "matita.basedir")) no_options in options let initial_status = lazy { aliases = DisambiguateTypes.Environment.empty; multi_aliases = DisambiguateTypes.Environment.empty; moo_content_rev = [], []; proof_status = No_proof; options = default_options (); objects = []; notation_ids = []; }