(* Copyright (C) 2004, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://helm.cs.unibo.it/ *) open Printf exception Meta_not_found of int exception Subst_not_found of int let lookup_meta index metasenv = try List.find (fun (index', _, _) -> index = index') metasenv with Not_found -> raise (Meta_not_found index) let lookup_subst n subst = try List.assoc n subst with Not_found -> raise (Subst_not_found n) let exists_meta index = List.exists (fun (index', _, _) -> (index = index')) (* clean_up_meta take a substitution, a metasenv a meta_inex and a local context l and clean up l with respect to the hidden hipothesis in the canonical context *) let clean_up_local_context subst metasenv n l = let cc = (try let (cc,_,_) = lookup_subst n subst in cc with Subst_not_found _ -> try let (_,cc,_) = lookup_meta n metasenv in cc with Meta_not_found _ -> assert false) in (try List.map2 (fun t1 t2 -> match t1,t2 with None , _ -> None | _ , t -> t) cc l with Invalid_argument _ -> assert false) let is_closed = let module C = Cic in let rec is_closed k = function C.Rel m when m > k -> false | C.Rel m -> true | C.Meta (_,l) -> List.fold_left (fun i t -> i && (match t with None -> true | Some t -> is_closed k t) ) true l | C.Sort _ -> true | C.Implicit _ -> assert false | C.Cast (te,ty) -> is_closed k te && is_closed k ty | C.Prod (name,so,dest) -> is_closed k so && is_closed (k+1) dest | C.Lambda (_,so,dest) -> is_closed k so && is_closed (k+1) dest | C.LetIn (_,so,dest) -> is_closed k so && is_closed (k+1) dest | C.Appl l -> List.fold_right (fun x i -> i && is_closed k x) l true | C.Var (_,exp_named_subst) | C.Const (_,exp_named_subst) | C.MutInd (_,_,exp_named_subst) | C.MutConstruct (_,_,_,exp_named_subst) -> List.fold_right (fun (_,x) i -> i && is_closed k x) exp_named_subst true | C.MutCase (_,_,out,te,pl) -> is_closed k out && is_closed k te && List.fold_right (fun x i -> i && is_closed k x) pl true | C.Fix (_,fl) -> let len = List.length fl in let k_plus_len = k + len in List.fold_right (fun (_,_,ty,bo) i -> i && is_closed k ty && is_closed k_plus_len bo ) fl true | C.CoFix (_,fl) -> let len = List.length fl in let k_plus_len = k + len in List.fold_right (fun (_,ty,bo) i -> i && is_closed k ty && is_closed k_plus_len bo ) fl true in is_closed 0 ;; let rec is_meta_closed = function Cic.Rel _ -> true | Cic.Meta _ -> false | Cic.Sort _ -> true | Cic.Implicit _ -> assert false | Cic.Cast (te,ty) -> is_meta_closed te && is_meta_closed ty | Cic.Prod (name,so,dest) -> is_meta_closed so && is_meta_closed dest | Cic.Lambda (_,so,dest) -> is_meta_closed so && is_meta_closed dest | Cic.LetIn (_,so,dest) -> is_meta_closed so && is_meta_closed dest | Cic.Appl l -> List.fold_right (fun x i -> i && is_meta_closed x) l true | Cic.Var (_,exp_named_subst) | Cic.Const (_,exp_named_subst) | Cic.MutInd (_,_,exp_named_subst) | Cic.MutConstruct (_,_,_,exp_named_subst) -> List.fold_right (fun (_,x) i -> i && is_meta_closed x) exp_named_subst true | Cic.MutCase (_,_,out,te,pl) -> is_meta_closed out && is_meta_closed te && List.fold_right (fun x i -> i && is_meta_closed x) pl true | Cic.Fix (_,fl) -> List.fold_right (fun (_,_,ty,bo) i -> i && is_meta_closed ty && is_meta_closed bo ) fl true | Cic.CoFix (_,fl) -> List.fold_right (fun (_,ty,bo) i -> i && is_meta_closed ty && is_meta_closed bo ) fl true ;; let xpointer_RE = Str.regexp "\\([^#]+\\)#xpointer(\\(.*\\))" let slash_RE = Str.regexp "/" let term_of_uri uri = let s = UriManager.string_of_uri uri in try (if String.sub s (String.length s - 4) 4 = ".con" then Cic.Const (uri, []) else if String.sub s (String.length s - 4) 4 = ".var" then Cic.Var (uri, []) else if not (Str.string_match xpointer_RE s 0) then raise (UriManager.IllFormedUri s) else let (baseuri,xpointer) = (Str.matched_group 1 s, Str.matched_group 2 s) in let baseuri = UriManager.uri_of_string baseuri in (match Str.split slash_RE xpointer with | [_; tyno] -> Cic.MutInd (baseuri, int_of_string tyno - 1, []) | [_; tyno; consno] -> Cic.MutConstruct (baseuri, int_of_string tyno - 1, int_of_string consno, []) | _ -> raise Exit)) with | Exit | Failure _ | Not_found -> raise (UriManager.IllFormedUri s) let uri_of_term = function | Cic.Const (uri, []) | Cic.Var (uri, []) -> uri | Cic.MutInd (baseuri, tyno, []) -> UriManager.uri_of_string (sprintf "%s#xpointer(1/%d)" (UriManager.string_of_uri baseuri) (tyno+1)) | Cic.MutConstruct (baseuri, tyno, consno, []) -> UriManager.uri_of_string (sprintf "%s#xpointer(1/%d/%d)" (UriManager.string_of_uri baseuri) (tyno + 1) consno) | _ -> raise (Invalid_argument "uri_of_term") let select ~term ~context = let rec aux context term = match (context, term) with | Cic.Implicit (Some `Hole), t -> [t] | Cic.Implicit None,_ -> [] | Cic.Meta (_, ctxt1), Cic.Meta (_, ctxt2) -> List.concat (List.map2 (fun t1 t2 -> (match (t1, t2) with Some t1, Some t2 -> aux t1 t2 | _ -> [])) ctxt1 ctxt2) | Cic.Cast (te1, ty1), Cic.Cast (te2, ty2) -> aux te1 te2 @ aux ty1 ty2 | Cic.Prod (_, s1, t1), Cic.Prod (_, s2, t2) | Cic.Lambda (_, s1, t1), Cic.Lambda (_, s2, t2) | Cic.LetIn (_, s1, t1), Cic.LetIn (_, s2, t2) -> aux s1 s2 @ aux t1 t2 | Cic.Appl terms1, Cic.Appl terms2 -> auxs terms1 terms2 | Cic.Var (_, subst1), Cic.Var (_, subst2) | Cic.Const (_, subst1), Cic.Const (_, subst2) | Cic.MutInd (_, _, subst1), Cic.MutInd (_, _, subst2) | Cic.MutConstruct (_, _, _, subst1), Cic.MutConstruct (_, _, _, subst2) -> auxs (List.map snd subst1) (List.map snd subst2) | Cic.MutCase (_, _, out1, t1, pat1), Cic.MutCase (_ , _, out2, t2, pat2) -> aux out1 out2 @ aux t1 t2 @ auxs pat1 pat2 | Cic.Fix (_, funs1), Cic.Fix (_, funs2) -> List.concat (List.map2 (fun (_, _, ty1, bo1) (_, _, ty2, bo2) -> aux ty1 ty2 @ aux bo1 bo2) funs1 funs2) | Cic.CoFix (_, funs1), Cic.CoFix (_, funs2) -> List.concat (List.map2 (fun (_, ty1, bo1) (_, ty2, bo2) -> aux ty1 ty2 @ aux bo1 bo2) funs1 funs2) | _ -> assert false and auxs terms1 terms2 = (* as aux for list of terms *) List.concat (List.map2 aux terms1 terms2) in aux context term let context_of ?(equality=(==)) ~term terms = let (===) x y = equality x y in let rec aux t = match t with | t when List.exists (fun t' -> t === t') terms -> Cic.Implicit (Some `Hole) | Cic.Var (uri, subst) -> Cic.Var (uri, aux_subst subst) | Cic.Meta (i, ctxt) -> let ctxt = List.map (function None -> None | Some t -> Some (aux t)) ctxt in Cic.Meta (i, ctxt) | Cic.Cast (t, ty) -> Cic.Cast (aux t, aux ty) | Cic.Prod (name, s, t) -> Cic.Prod (name, aux s, aux t) | Cic.Lambda (name, s, t) -> Cic.Lambda (name, aux s, aux t) | Cic.LetIn (name, s, t) -> Cic.LetIn (name, aux s, aux t) | Cic.Appl terms -> Cic.Appl (List.map aux terms) | Cic.Const (uri, subst) -> Cic.Const (uri, aux_subst subst) | Cic.MutInd (uri, tyno, subst) -> Cic.MutInd (uri, tyno, aux_subst subst) | Cic.MutConstruct (uri, tyno, consno, subst) -> Cic.MutConstruct (uri, tyno, consno, aux_subst subst) | Cic.MutCase (uri, tyno, outty, t, pat) -> Cic.MutCase (uri, tyno, aux outty, aux t, List.map aux pat) | Cic.Fix (funno, funs) -> let funs = List.map (fun (name, i, ty, bo) -> (name, i, aux ty, aux bo)) funs in Cic.Fix (funno, funs) | Cic.CoFix (funno, funs) -> let funs = List.map (fun (name, ty, bo) -> (name, aux ty, aux bo)) funs in Cic.CoFix (funno, funs) | Cic.Rel _ | Cic.Sort _ | Cic.Implicit _ -> t and aux_subst subst = List.map (fun (uri, t) -> (uri, aux t)) subst in aux term (* let pack terms = List.fold_right (fun term acc -> Cic.Prod (Cic.Anonymous, term, acc)) terms (Cic.Sort (Cic.Type (CicUniv.fresh ()))) let rec unpack = function | Cic.Prod (Cic.Anonymous, term, Cic.Sort (Cic.Type _)) -> [term] | Cic.Prod (Cic.Anonymous, term, tgt) -> term :: unpack tgt | _ -> assert false *) let rec strip_prods n = function | t when n = 0 -> t | Cic.Prod (_, _, tgt) when n > 0 -> strip_prods (n-1) tgt | _ -> failwith "not enough prods" let params_of_obj = function | Cic.Constant (_, _, _, params, _) | Cic.Variable (_, _, _, params, _) | Cic.CurrentProof (_, _, _, _, params, _) | Cic.InductiveDefinition (_, params, _, _) -> params let attributes_of_obj = function | Cic.Constant (_, _, _, _, attributes) | Cic.Variable (_, _, _, _, attributes) | Cic.CurrentProof (_, _, _, _, _, attributes) | Cic.InductiveDefinition (_, _, _, attributes) -> attributes let rec mk_rels howmany from = match howmany with | 0 -> [] | _ -> (Cic.Rel (howmany + from)) :: (mk_rels (howmany-1) from)