(* Copyright (C) 2004, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://helm.cs.unibo.it/ *) open Printf open DisambiguateTypes open UriManager exception No_choices of domain_item exception NoWellTypedInterpretation of string Lazy.t list exception PathNotWellFormed (** raised when an environment is not enough informative to decide *) exception Try_again of string Lazy.t type aliases = bool * DisambiguateTypes.environment let debug = false let debug_print s = if debug then prerr_endline (Lazy.force s) else () (* (** print benchmark information *) let benchmark = true let max_refinements = ref 0 (* benchmarking is not thread safe *) let actual_refinements = ref 0 let domain_size = ref 0 let choices_avg = ref 0. *) let descr_of_domain_item = function | Id s -> s | Symbol (s, _) -> s | Num i -> string_of_int i type 'a test_result = | Ok of 'a * Cic.metasenv | Ko of string Lazy.t | Uncertain of string Lazy.t let refine_term metasenv context uri term ugraph = (* if benchmark then incr actual_refinements; *) assert (uri=None); debug_print (lazy (sprintf "TEST_INTERPRETATION: %s" (CicPp.ppterm term))); try let term', _, metasenv',ugraph1 = CicRefine.type_of_aux' metasenv context term ugraph in (Ok (term', metasenv')),ugraph1 with | CicRefine.Uncertain msg -> debug_print (lazy ("UNCERTAIN!!! [" ^ (Lazy.force msg) ^ "] " ^ CicPp.ppterm term)) ; Uncertain (msg (*lazy ("Uncertain trying to refine: " ^ CicMetaSubst.ppterm_in_context [] term context ^ "\n" ^ Lazy.force msg)*)),ugraph | CicRefine.RefineFailure msg -> debug_print (lazy (sprintf "PRUNED!!!\nterm%s\nmessage:%s" (CicPp.ppterm term) (Lazy.force msg))); Ko (msg (*lazy ("Error trying to refine: " ^ CicMetaSubst.ppterm_in_context [] term context ^ "\n" ^ Lazy.force msg)*)),ugraph let refine_obj metasenv context uri obj ugraph = assert (context = []); debug_print (lazy (sprintf "TEST_INTERPRETATION: %s" (CicPp.ppobj obj))) ; try let obj', metasenv,ugraph = CicRefine.typecheck metasenv uri obj in (Ok (obj', metasenv)),ugraph with | CicRefine.Uncertain msg -> debug_print (lazy ("UNCERTAIN!!! [" ^ (Lazy.force msg) ^ "] " ^ CicPp.ppobj obj)) ; Uncertain (msg (*lazy ("Uncertain trying to refine: " ^ CicPp.ppobj obj ^ "\n" ^ Lazy.force msg)*)),ugraph | CicRefine.RefineFailure msg -> debug_print (lazy (sprintf "PRUNED!!!\nterm%s\nmessage:%s" (CicPp.ppobj obj) (Lazy.force msg))) ; Ko (msg (*lazy ("Error trying to refine: " ^ CicPp.ppobj obj ^ "\n" ^ Lazy.force msg)*)),ugraph let resolve (env: codomain_item Environment.t) (item: domain_item) ?(num = "") ?(args = []) () = try snd (Environment.find item env) env num args with Not_found -> failwith ("Domain item not found: " ^ (DisambiguateTypes.string_of_domain_item item)) (* TODO move it to Cic *) let find_in_context name (context: Cic.name list) = let rec aux acc = function | [] -> raise Not_found | Cic.Name hd :: tl when hd = name -> acc | _ :: tl -> aux (acc + 1) tl in aux 1 context let interpretate_term ~(context: Cic.name list) ~env ~uri ~is_path ast = assert (uri = None); let rec aux loc (context: Cic.name list) = function | CicNotationPt.AttributedTerm (`Loc loc, term) -> aux loc context term | CicNotationPt.AttributedTerm (_, term) -> aux loc context term | CicNotationPt.Appl (CicNotationPt.Symbol (symb, i) :: args) -> let cic_args = List.map (aux loc context) args in resolve env (Symbol (symb, i)) ~args:cic_args () | CicNotationPt.Appl terms -> Cic.Appl (List.map (aux loc context) terms) | CicNotationPt.Binder (binder_kind, (var, typ), body) -> let cic_type = aux_option loc context (Some `Type) typ in let cic_name = CicNotationUtil.cic_name_of_name var in let cic_body = aux loc (cic_name :: context) body in (match binder_kind with | `Lambda -> Cic.Lambda (cic_name, cic_type, cic_body) | `Pi | `Forall -> Cic.Prod (cic_name, cic_type, cic_body) | `Exists -> resolve env (Symbol ("exists", 0)) ~args:[ cic_type; Cic.Lambda (cic_name, cic_type, cic_body) ] ()) | CicNotationPt.Case (term, indty_ident, outtype, branches) -> let cic_term = aux loc context term in let cic_outtype = aux_option loc context None outtype in let do_branch ((head, _, args), term) = let rec do_branch' context = function | [] -> aux loc context term | (name, typ) :: tl -> let cic_name = CicNotationUtil.cic_name_of_name name in let cic_body = do_branch' (cic_name :: context) tl in let typ = match typ with | None -> Cic.Implicit (Some `Type) | Some typ -> aux loc context typ in Cic.Lambda (cic_name, typ, cic_body) in do_branch' context args in let (indtype_uri, indtype_no) = match indty_ident with | Some (indty_ident, _) -> (match resolve env (Id indty_ident) () with | Cic.MutInd (uri, tyno, _) -> (uri, tyno) | Cic.Implicit _ -> raise (Try_again (lazy "The type of the term to be matched is still unknown")) | _ -> raise (Invalid_choice (lazy "The type of the term to be matched is not (co)inductive!"))) | None -> let fst_constructor = match branches with | ((head, _, _), _) :: _ -> head | [] -> raise (Invalid_choice (lazy "The type of the term to be matched is an inductive type without constructors that cannot be determined")) in (match resolve env (Id fst_constructor) () with | Cic.MutConstruct (indtype_uri, indtype_no, _, _) -> (indtype_uri, indtype_no) | Cic.Implicit _ -> raise (Try_again (lazy "The type of the term to be matched is still unknown")) | _ -> raise (Invalid_choice (lazy "The type of the term to be matched is not (co)inductive!"))) in Cic.MutCase (indtype_uri, indtype_no, cic_outtype, cic_term, (List.map do_branch branches)) | CicNotationPt.Cast (t1, t2) -> let cic_t1 = aux loc context t1 in let cic_t2 = aux loc context t2 in Cic.Cast (cic_t1, cic_t2) | CicNotationPt.LetIn ((name, typ), def, body) -> let cic_def = aux loc context def in let cic_name = CicNotationUtil.cic_name_of_name name in let cic_def = match typ with | None -> cic_def | Some t -> Cic.Cast (cic_def, aux loc context t) in let cic_body = aux loc (cic_name :: context) body in Cic.LetIn (cic_name, cic_def, cic_body) | CicNotationPt.LetRec (kind, defs, body) -> let context' = List.fold_left (fun acc ((name, _), _, _) -> CicNotationUtil.cic_name_of_name name :: acc) context defs in let cic_body = aux loc context' body in let inductiveFuns = List.map (fun ((name, typ), body, decr_idx) -> let cic_body = aux loc context' body in let cic_type = aux_option loc context (Some `Type) typ in let name = match CicNotationUtil.cic_name_of_name name with | Cic.Anonymous -> CicNotationPt.fail loc "Recursive functions cannot be anonymous" | Cic.Name name -> name in (name, decr_idx, cic_type, cic_body)) defs in let counter = ref ~-1 in let build_term funs = (* this is the body of the fold_right function below. Rationale: Fix * and CoFix cases differs only in an additional index in the * inductiveFun list, see Cic.term *) match kind with | `Inductive -> (fun (var, _, _, _) cic -> incr counter; let fix = Cic.Fix (!counter,funs) in match cic with Cic.Rel 1 -> fix | (Cic.Appl (Cic.Rel 1::l)) -> (try let l' = List.map (function t -> let t',subst,metasenv = CicMetaSubst.delift_rels [] [] 1 t in assert (subst=[]); assert (metasenv=[]); t') l in Cic.Appl (fix::l') with CicMetaSubst.DeliftingARelWouldCaptureAFreeVariable -> Cic.LetIn (Cic.Name var, fix, cic)) | _ -> Cic.LetIn (Cic.Name var, fix, cic)) | `CoInductive -> let funs = List.map (fun (name, _, typ, body) -> (name, typ, body)) funs in (fun (var, _, _, _) cic -> incr counter; let cofix = Cic.CoFix (!counter,funs) in match cic with Cic.Rel 1 -> cofix | (Cic.Appl (Cic.Rel 1::l)) -> Cic.Appl (cofix::l) | _ -> Cic.LetIn (Cic.Name var, cofix, cic)) in List.fold_right (build_term inductiveFuns) inductiveFuns cic_body | CicNotationPt.Ident _ | CicNotationPt.Uri _ when is_path -> raise PathNotWellFormed | CicNotationPt.Ident (name, subst) | CicNotationPt.Uri (name, subst) as ast -> let is_uri = function CicNotationPt.Uri _ -> true | _ -> false in (try if is_uri ast then raise Not_found;(* don't search the env for URIs *) let index = find_in_context name context in if subst <> None then CicNotationPt.fail loc "Explicit substitutions not allowed here"; Cic.Rel index with Not_found -> let cic = if is_uri ast then (* we have the URI, build the term out of it *) try CicUtil.term_of_uri (UriManager.uri_of_string name) with UriManager.IllFormedUri _ -> CicNotationPt.fail loc "Ill formed URI" else resolve env (Id name) () in let mk_subst uris = let ids_to_uris = List.map (fun uri -> UriManager.name_of_uri uri, uri) uris in (match subst with | Some subst -> List.map (fun (s, term) -> (try List.assoc s ids_to_uris, aux loc context term with Not_found -> raise (Invalid_choice (lazy "The provided explicit named substitution is trying to instantiate a named variable the object is not abstracted on")))) subst | None -> List.map (fun uri -> uri, Cic.Implicit None) uris) in (try match cic with | Cic.Const (uri, []) -> let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in let uris = CicUtil.params_of_obj o in Cic.Const (uri, mk_subst uris) | Cic.Var (uri, []) -> let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in let uris = CicUtil.params_of_obj o in Cic.Var (uri, mk_subst uris) | Cic.MutInd (uri, i, []) -> (try let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in let uris = CicUtil.params_of_obj o in Cic.MutInd (uri, i, mk_subst uris) with CicEnvironment.Object_not_found _ -> (* if we are here it is probably the case that during the definition of a mutual inductive type we have met an occurrence of the type in one of its constructors. However, the inductive type is not yet in the environment *) (*here the explicit_named_substituion is assumed to be of length 0 *) Cic.MutInd (uri,i,[])) | Cic.MutConstruct (uri, i, j, []) -> let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in let uris = CicUtil.params_of_obj o in Cic.MutConstruct (uri, i, j, mk_subst uris) | Cic.Meta _ | Cic.Implicit _ as t -> (* debug_print (lazy (sprintf "Warning: %s must be instantiated with _[%s] but we do not enforce it" (CicPp.ppterm t) (String.concat "; " (List.map (fun (s, term) -> s ^ " := " ^ CicNotationPtPp.pp_term term) subst)))); *) t | _ -> raise (Invalid_choice (lazy "??? Can this happen?")) with CicEnvironment.CircularDependency _ -> raise (Invalid_choice (lazy "Circular dependency in the environment")))) | CicNotationPt.Implicit -> Cic.Implicit None | CicNotationPt.UserInput -> Cic.Implicit (Some `Hole) | CicNotationPt.Num (num, i) -> resolve env (Num i) ~num () | CicNotationPt.Meta (index, subst) -> let cic_subst = List.map (function None -> None | Some term -> Some (aux loc context term)) subst in Cic.Meta (index, cic_subst) | CicNotationPt.Sort `Prop -> Cic.Sort Cic.Prop | CicNotationPt.Sort `Set -> Cic.Sort Cic.Set | CicNotationPt.Sort (`Type u) -> Cic.Sort (Cic.Type u) | CicNotationPt.Sort `CProp -> Cic.Sort Cic.CProp | CicNotationPt.Symbol (symbol, instance) -> resolve env (Symbol (symbol, instance)) () | _ -> assert false (* god bless Bologna *) and aux_option loc (context: Cic.name list) annotation = function | None -> Cic.Implicit annotation | Some term -> aux loc context term in match ast with | CicNotationPt.AttributedTerm (`Loc loc, term) -> aux loc context term | term -> aux dummy_floc context term let interpretate_path ~context path = interpretate_term ~context ~env:Environment.empty ~uri:None ~is_path:true path let interpretate_obj ~context ~env ~uri ~is_path obj = assert (context = []); assert (is_path = false); match obj with | GrafiteAst.Inductive (params,tyl) -> let uri = match uri with Some uri -> uri | None -> assert false in let context,params = let context,res = List.fold_left (fun (context,res) (name,t) -> Cic.Name name :: context, (name, interpretate_term context env None false t)::res ) ([],[]) params in context,List.rev res in let add_params = List.fold_right (fun (name,ty) t -> Cic.Prod (Cic.Name name,ty,t)) params in let name_to_uris = snd ( List.fold_left (*here the explicit_named_substituion is assumed to be of length 0 *) (fun (i,res) (name,_,_,_) -> i + 1,(name,name,Cic.MutInd (uri,i,[]))::res ) (0,[]) tyl) in let con_env = DisambiguateTypes.env_of_list name_to_uris env in let undebrujin t = snd (List.fold_right (fun (name,_,_,_) (i,t) -> (*here the explicit_named_substituion is assumed to be of length 0 *) let t' = Cic.MutInd (uri,i,[]) in let t = CicSubstitution.subst t' t in i - 1,t ) tyl (List.length tyl - 1,t)) in let tyl = List.map (fun (name,b,ty,cl) -> let ty' = add_params (interpretate_term context env None false ty) in let cl' = List.map (fun (name,ty) -> let ty' = add_params (interpretate_term context con_env None false ty) in name,undebrujin ty' ) cl in name,b,ty',cl' ) tyl in Cic.InductiveDefinition (tyl,[],List.length params,[]) | GrafiteAst.Record (params,name,ty,fields) -> let uri = match uri with Some uri -> uri | None -> assert false in let context,params = let context,res = List.fold_left (fun (context,res) (name,t) -> (Cic.Name name :: context), (name, interpretate_term context env None false t)::res ) ([],[]) params in context,List.rev res in let add_params = List.fold_right (fun (name,ty) t -> Cic.Prod (Cic.Name name,ty,t)) params in let ty' = add_params (interpretate_term context env None false ty) in let fields' = snd ( List.fold_left (fun (context,res) (name,ty) -> let context' = Cic.Name name :: context in context',(name,interpretate_term context env None false ty)::res ) (context,[]) fields) in let concl = (*here the explicit_named_substituion is assumed to be of length 0 *) let mutind = Cic.MutInd (uri,0,[]) in if params = [] then mutind else Cic.Appl (mutind::CicUtil.mk_rels (List.length params) (List.length fields)) in let con = List.fold_left (fun t (name,ty) -> Cic.Prod (Cic.Name name,ty,t)) concl fields' in let con' = add_params con in let tyl = [name,true,ty',["mk_" ^ name,con']] in let field_names = List.map fst fields in Cic.InductiveDefinition (tyl,[],List.length params,[`Class (`Record field_names)]) | GrafiteAst.Theorem (flavour, name, ty, bo) -> let attrs = [`Flavour flavour] in let ty' = interpretate_term [] env None false ty in (match bo with None -> Cic.CurrentProof (name,[],Cic.Implicit None,ty',[],attrs) | Some bo -> let bo' = Some (interpretate_term [] env None false bo) in Cic.Constant (name,bo',ty',[],attrs)) (* e.g. [5;1;1;1;2;3;4;1;2] -> [2;1;4;3;5] *) let rev_uniq = let module SortedItem = struct type t = DisambiguateTypes.domain_item let compare = Pervasives.compare end in let module Set = Set.Make (SortedItem) in fun l -> let rev_l = List.rev l in let (_, uniq_rev_l) = List.fold_left (fun (members, rev_l) elt -> if Set.mem elt members then (members, rev_l) else Set.add elt members, elt :: rev_l) (Set.empty, []) rev_l in List.rev uniq_rev_l (* "aux" keeps domain in reverse order and doesn't care about duplicates. * Domain item more in deep in the list will be processed first. *) let rec domain_rev_of_term ?(loc = dummy_floc) context = function | CicNotationPt.AttributedTerm (`Loc loc, term) -> domain_rev_of_term ~loc context term | CicNotationPt.AttributedTerm (_, term) -> domain_rev_of_term ~loc context term | CicNotationPt.Appl terms -> List.fold_left (fun dom term -> domain_rev_of_term ~loc context term @ dom) [] terms | CicNotationPt.Binder (kind, (var, typ), body) -> let kind_dom = match kind with | `Exists -> [ Symbol ("exists", 0) ] | _ -> [] in let type_dom = domain_rev_of_term_option loc context typ in let body_dom = domain_rev_of_term ~loc (CicNotationUtil.cic_name_of_name var :: context) body in body_dom @ type_dom @ kind_dom | CicNotationPt.Case (term, indty_ident, outtype, branches) -> let term_dom = domain_rev_of_term ~loc context term in let outtype_dom = domain_rev_of_term_option loc context outtype in let get_first_constructor = function | [] -> [] | ((head, _, _), _) :: _ -> [ Id head ] in let do_branch ((head, _, args), term) = let (term_context, args_domain) = List.fold_left (fun (cont, dom) (name, typ) -> (CicNotationUtil.cic_name_of_name name :: cont, (match typ with | None -> dom | Some typ -> domain_rev_of_term ~loc cont typ @ dom))) (context, []) args in args_domain @ domain_rev_of_term ~loc term_context term in let branches_dom = List.fold_left (fun dom branch -> do_branch branch @ dom) [] branches in branches_dom @ outtype_dom @ term_dom @ (match indty_ident with | None -> get_first_constructor branches | Some (ident, _) -> [ Id ident ]) | CicNotationPt.Cast (term, ty) -> let term_dom = domain_rev_of_term ~loc context term in let ty_dom = domain_rev_of_term ~loc context ty in ty_dom @ term_dom | CicNotationPt.LetIn ((var, typ), body, where) -> let body_dom = domain_rev_of_term ~loc context body in let type_dom = domain_rev_of_term_option loc context typ in let where_dom = domain_rev_of_term ~loc (CicNotationUtil.cic_name_of_name var :: context) where in where_dom @ type_dom @ body_dom | CicNotationPt.LetRec (kind, defs, where) -> let context' = List.fold_left (fun acc ((var, typ), _, _) -> CicNotationUtil.cic_name_of_name var :: acc) context defs in let where_dom = domain_rev_of_term ~loc context' where in let defs_dom = List.fold_left (fun dom ((_, typ), body, _) -> domain_rev_of_term ~loc context' body @ domain_rev_of_term_option loc context typ) [] defs in where_dom @ defs_dom | CicNotationPt.Ident (name, subst) -> (try let index = find_in_context name context in if subst <> None then CicNotationPt.fail loc "Explicit substitutions not allowed here" else [] with Not_found -> (match subst with | None -> [Id name] | Some subst -> List.fold_left (fun dom (_, term) -> let dom' = domain_rev_of_term ~loc context term in dom' @ dom) [Id name] subst)) | CicNotationPt.Uri _ -> [] | CicNotationPt.Implicit -> [] | CicNotationPt.Num (num, i) -> [ Num i ] | CicNotationPt.Meta (index, local_context) -> List.fold_left (fun dom term -> domain_rev_of_term_option loc context term @ dom) [] local_context | CicNotationPt.Sort _ -> [] | CicNotationPt.Symbol (symbol, instance) -> [ Symbol (symbol, instance) ] | CicNotationPt.UserInput | CicNotationPt.Literal _ | CicNotationPt.Layout _ | CicNotationPt.Magic _ | CicNotationPt.Variable _ -> assert false and domain_rev_of_term_option loc context = function | None -> [] | Some t -> domain_rev_of_term ~loc context t let domain_of_term ~context ast = rev_uniq (domain_rev_of_term context ast) let domain_of_obj ~context ast = assert (context = []); let domain_rev = match ast with | GrafiteAst.Theorem (_,_,ty,bo) -> (match bo with None -> [] | Some bo -> domain_rev_of_term [] bo) @ domain_of_term [] ty | GrafiteAst.Inductive (params,tyl) -> let dom = List.flatten ( List.rev_map (fun (_,_,ty,cl) -> List.flatten ( List.rev_map (fun (_,ty) -> domain_rev_of_term [] ty) cl) @ domain_rev_of_term [] ty) tyl) in let dom = List.fold_left (fun dom (_,ty) -> domain_rev_of_term [] ty @ dom ) dom params in List.filter (fun name -> not ( List.exists (fun (name',_) -> name = Id name') params || List.exists (fun (name',_,_,_) -> name = Id name') tyl) ) dom | GrafiteAst.Record (params,_,ty,fields) -> let dom = List.flatten (List.rev_map (fun (_,ty) -> domain_rev_of_term [] ty) fields) in let dom = List.filter (fun name-> not ( List.exists (fun (name',_) -> name = Id name') params || List.exists (fun (name',_) -> name = Id name') fields) ) dom in List.fold_left (fun dom (_,ty) -> domain_rev_of_term [] ty @ dom ) (dom @ domain_rev_of_term [] ty) params in rev_uniq domain_rev (* dom1 \ dom2 *) let domain_diff dom1 dom2 = (* let domain_diff = Domain.diff *) let is_in_dom2 = List.fold_left (fun pred elt -> (fun elt' -> elt' = elt || pred elt')) (fun _ -> false) dom2 in List.filter (fun elt -> not (is_in_dom2 elt)) dom1 module type Disambiguator = sig val disambiguate_term : ?fresh_instances:bool -> dbd:HMysql.dbd -> context:Cic.context -> metasenv:Cic.metasenv -> ?initial_ugraph:CicUniv.universe_graph -> aliases:DisambiguateTypes.environment ->(* previous interpretation status *) universe:DisambiguateTypes.multiple_environment option -> CicNotationPt.term -> ((DisambiguateTypes.domain_item * DisambiguateTypes.codomain_item) list * Cic.metasenv * (* new metasenv *) Cic.term* CicUniv.universe_graph) list * (* disambiguated term *) bool val disambiguate_obj : ?fresh_instances:bool -> dbd:HMysql.dbd -> aliases:DisambiguateTypes.environment ->(* previous interpretation status *) universe:DisambiguateTypes.multiple_environment option -> uri:UriManager.uri option -> (* required only for inductive types *) GrafiteAst.obj -> ((DisambiguateTypes.domain_item * DisambiguateTypes.codomain_item) list * Cic.metasenv * (* new metasenv *) Cic.obj * CicUniv.universe_graph) list * (* disambiguated obj *) bool end module Make (C: Callbacks) = struct let choices_of_id dbd id = let uris = MetadataQuery.locate ~dbd id in let uris = match uris with | [] -> [(C.input_or_locate_uri ~title:("URI matching \"" ^ id ^ "\" unknown.") ~id ())] | [uri] -> [uri] | _ -> C.interactive_user_uri_choice ~selection_mode:`MULTIPLE ~ok:"Try selected." ~enable_button_for_non_vars:true ~title:"Ambiguous input." ~id ~msg: ("Ambiguous input \"" ^ id ^ "\". Please, choose one or more interpretations:") uris in List.map (fun uri -> (UriManager.string_of_uri uri, let term = try CicUtil.term_of_uri uri with exn -> debug_print (lazy (UriManager.string_of_uri uri)); debug_print (lazy (Printexc.to_string exn)); assert false in fun _ _ _ -> term)) uris let refine_profiler = HExtlib.profile "disambiguate_thing.refine_thing" let disambiguate_thing ~dbd ~context ~metasenv ?(initial_ugraph = CicUniv.empty_ugraph) ~aliases ~universe ~uri ~pp_thing ~domain_of_thing ~interpretate_thing ~refine_thing thing = debug_print (lazy "DISAMBIGUATE INPUT"); let disambiguate_context = (* cic context -> disambiguate context *) List.map (function None -> Cic.Anonymous | Some (name, _) -> name) context in debug_print (lazy ("TERM IS: " ^ (pp_thing thing))); let thing_dom = domain_of_thing ~context:disambiguate_context thing in debug_print (lazy (sprintf "DISAMBIGUATION DOMAIN: %s" (string_of_domain thing_dom))); (* debug_print (lazy (sprintf "DISAMBIGUATION ENVIRONMENT: %s" (DisambiguatePp.pp_environment aliases))); debug_print (lazy (sprintf "DISAMBIGUATION UNIVERSE: %s" (match universe with None -> "None" | Some _ -> "Some _"))); *) let current_dom = Environment.fold (fun item _ dom -> item :: dom) aliases [] in let todo_dom = domain_diff thing_dom current_dom in (* (2) lookup function for any item (Id/Symbol/Num) *) let lookup_choices = let id_choices = Hashtbl.create 1023 in fun item -> let choices = let lookup_in_library () = match item with | Id id -> choices_of_id dbd id | Symbol (symb, _) -> List.map DisambiguateChoices.mk_choice (CicNotationRew.lookup_interpretations symb) | Num instance -> DisambiguateChoices.lookup_num_choices () in match universe with | None -> lookup_in_library () | Some e -> (try Environment.find item e with Not_found -> lookup_in_library ()) in if choices = [] then raise (No_choices item); choices in (* (* *) let _ = if benchmark then begin let per_item_choices = List.map (fun dom_item -> try let len = List.length (lookup_choices dom_item) in debug_print (lazy (sprintf "BENCHMARK %s: %d" (string_of_domain_item dom_item) len)); len with No_choices _ -> 0) thing_dom in max_refinements := List.fold_left ( * ) 1 per_item_choices; actual_refinements := 0; domain_size := List.length thing_dom; choices_avg := (float_of_int !max_refinements) ** (1. /. float_of_int !domain_size) end in (* *) *) (* (3) test an interpretation filling with meta uninterpreted identifiers *) let test_env aliases todo_dom ugraph = let filled_env = List.fold_left (fun env item -> Environment.add item ("Implicit", (match item with | Id _ | Num _ -> (fun _ _ _ -> Cic.Implicit (Some `Closed)) | Symbol _ -> (fun _ _ _ -> Cic.Implicit None))) env) aliases todo_dom in try let cic_thing = interpretate_thing ~context:disambiguate_context ~env:filled_env ~uri ~is_path:false thing in let foo () = let k,ugraph1 = refine_thing metasenv context uri cic_thing ugraph in (k , ugraph1 ) in refine_profiler.HExtlib.profile foo () with | Try_again msg -> Uncertain msg, ugraph | Invalid_choice msg -> Ko msg, ugraph in (* (4) build all possible interpretations *) let (@@) (l1,l2) (l1',l2') = l1@l1', l2@l2' in let rec aux aliases diff lookup_in_todo_dom todo_dom base_univ = match todo_dom with | [] -> assert (lookup_in_todo_dom = None); (match test_env aliases [] base_univ with | Ok (thing, metasenv),new_univ -> [ aliases, diff, metasenv, thing, new_univ ], [] | Ko msg,_ | Uncertain msg,_ -> [],[msg]) | item :: remaining_dom -> debug_print (lazy (sprintf "CHOOSED ITEM: %s" (string_of_domain_item item))); let choices = match lookup_in_todo_dom with None -> lookup_choices item | Some choices -> choices in match choices with [] -> [], [lazy "No choices"] | [codomain_item] -> (* just one choice. We perform a one-step look-up and if the next set of choices is also a singleton we skip this refinement step *) debug_print(lazy (sprintf "%s CHOSEN" (fst codomain_item))); let new_env = Environment.add item codomain_item aliases in let new_diff = (item,codomain_item)::diff in let lookup_in_todo_dom,next_choice_is_single = match remaining_dom with [] -> None,false | he::_ -> let choices = lookup_choices he in Some choices,List.length choices = 1 in if next_choice_is_single then aux new_env new_diff lookup_in_todo_dom remaining_dom base_univ else (match test_env new_env remaining_dom base_univ with | Ok (thing, metasenv),new_univ -> (match remaining_dom with | [] -> [ new_env, new_diff, metasenv, thing, new_univ ], [] | _ -> aux new_env new_diff lookup_in_todo_dom remaining_dom new_univ) | Uncertain msg,new_univ -> (match remaining_dom with | [] -> [], [msg] | _ -> aux new_env new_diff lookup_in_todo_dom remaining_dom new_univ) | Ko msg,_ -> [], [msg]) | _::_ -> let rec filter univ = function | [] -> [],[] | codomain_item :: tl -> debug_print(lazy (sprintf "%s CHOSEN" (fst codomain_item))); let new_env = Environment.add item codomain_item aliases in let new_diff = (item,codomain_item)::diff in (match test_env new_env remaining_dom univ with | Ok (thing, metasenv),new_univ -> (match remaining_dom with | [] -> [ new_env, new_diff, metasenv, thing, new_univ ], [] | _ -> aux new_env new_diff None remaining_dom new_univ ) @@ filter univ tl | Uncertain msg,new_univ -> (match remaining_dom with | [] -> [],[msg] | _ -> aux new_env new_diff None remaining_dom new_univ ) @@ filter univ tl | Ko msg,_ -> ([],[msg]) @@ filter univ tl) in filter base_univ choices in let base_univ = initial_ugraph in try let res = match aux aliases [] None todo_dom base_univ with | [],errors -> raise (NoWellTypedInterpretation errors) | [_,diff,metasenv,t,ugraph],_ -> debug_print (lazy "SINGLE INTERPRETATION"); [diff,metasenv,t,ugraph], false | l,_ -> debug_print (lazy (sprintf "MANY INTERPRETATIONS (%d)" (List.length l))); let choices = List.map (fun (env, _, _, _, _) -> List.map (fun domain_item -> let description = fst (Environment.find domain_item env) in (descr_of_domain_item domain_item, description)) thing_dom) l in let choosed = C.interactive_interpretation_choice choices in (List.map (fun n->let _,d,m,t,u= List.nth l n in d,m,t,u) choosed), true in res with CicEnvironment.CircularDependency s -> failwith "Disambiguate: circular dependency" let disambiguate_term ?(fresh_instances=false) ~dbd ~context ~metasenv ?(initial_ugraph = CicUniv.empty_ugraph) ~aliases ~universe term = let term = if fresh_instances then CicNotationUtil.freshen_term term else term in disambiguate_thing ~dbd ~context ~metasenv ~initial_ugraph ~aliases ~universe ~uri:None ~pp_thing:CicNotationPp.pp_term ~domain_of_thing:domain_of_term ~interpretate_thing:interpretate_term ~refine_thing:refine_term term let disambiguate_obj ?(fresh_instances=false) ~dbd ~aliases ~universe ~uri obj = let obj = if fresh_instances then CicNotationUtil.freshen_obj obj else obj in disambiguate_thing ~dbd ~context:[] ~metasenv:[] ~aliases ~universe ~uri ~pp_thing:GrafiteAstPp.pp_obj ~domain_of_thing:domain_of_obj ~interpretate_thing:interpretate_obj ~refine_thing:refine_obj obj end module Trivial = struct exception Ambiguous_term of string Lazy.t exception Exit module Callbacks = struct let interactive_user_uri_choice ~selection_mode ?ok ?(enable_button_for_non_vars = true) ~title ~msg ~id uris = raise Exit let interactive_interpretation_choice interp = raise Exit let input_or_locate_uri ~(title:string) ?id = raise Exit end module Disambiguator = Make (Callbacks) let disambiguate_string ~dbd ?(context = []) ?(metasenv = []) ?initial_ugraph ?(aliases = DisambiguateTypes.Environment.empty) term = let ast = CicNotationParser.parse_level2_ast (Ulexing.from_utf8_string term) in try fst (Disambiguator.disambiguate_term ~dbd ~context ~metasenv ast ?initial_ugraph ~aliases ~universe:None) with Exit -> raise (Ambiguous_term (lazy term)) end