(* Copyright (C) 2005, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://helm.cs.unibo.it/ *) open Printf exception Parse_error of Token.flocation * string exception Level_not_found of int let grammar = Grammar.gcreate CicNotationLexer.notation_lexer let level1_pattern = Grammar.Entry.create grammar "level1_pattern" let level2_pattern = Grammar.Entry.create grammar "level2_pattern" let level3_term = Grammar.Entry.create grammar "level3_term" let notation = Grammar.Entry.create grammar "notation" (* level1 <-> level 2 *) let interpretation = Grammar.Entry.create grammar "interpretation" (* level2 <-> level 3 *) let return_term loc term = () let loc_of_floc = function | { Lexing.pos_cnum = loc_begin }, { Lexing.pos_cnum = loc_end } -> (loc_begin, loc_end) let fail floc msg = let (x, y) = loc_of_floc floc in failwith (sprintf "Error at characters %d - %d: %s" x y msg) let int_of_string s = try Pervasives.int_of_string s with Failure _ -> failwith (sprintf "Lexer failure: string_of_int \"%s\" failed" s) open CicNotationPt let boxify = function | [ a ] -> a | l -> Layout (Box (H, l)) let fold_binder binder pt_names body = let fold_cluster binder names ty body = List.fold_right (fun name body -> Binder (binder, (Cic.Name name, ty), body)) names body in List.fold_right (fun (names, ty) body -> fold_cluster binder names ty body) pt_names body let return_term loc term = AttributedTerm (`Loc loc, term) EXTEND GLOBAL: level1_pattern level2_pattern level3_term notation interpretation; (* {{{ Grammar for concrete syntax patterns, notation level 1 *) level1_pattern: [ [ p = l1_pattern; EOI -> boxify p ] ]; l1_pattern: [ [ p = LIST0 l1_simple_pattern -> p ] ]; literal: [ [ s = SYMBOL -> `Symbol s | k = KEYWORD -> `Keyword k | n = NUMBER -> `Number n ] ]; sep: [ [ SYMBOL "\\SEP"; sep = literal -> sep ] ]; (* row_sep: [ [ SYMBOL "\\ROWSEP"; sep = literal -> sep ] ]; field_sep: [ [ SYMBOL "\\FIELDSEP"; sep = literal -> sep ] ]; *) l1_magic_pattern: [ [ SYMBOL "\\LIST0"; p = l1_simple_pattern; sep = OPT sep -> List0 (p, sep) | SYMBOL "\\LIST1"; p = l1_simple_pattern; sep = OPT sep -> List1 (p, sep) | SYMBOL "\\OPT"; p = l1_simple_pattern -> Opt p ] ]; l1_pattern_variable: [ [ id = IDENT -> TermVar id | SYMBOL "\\TERM"; id = IDENT -> TermVar id | SYMBOL "\\NUM"; id = IDENT -> NumVar id | SYMBOL "\\IDENT"; id = IDENT -> IdentVar id ] ]; l1_simple_pattern: [ "layout" LEFTA [ p1 = SELF; SYMBOL "\\SUB"; p2 = SELF -> return_term loc (Layout (Sub (p1, p2))) | p1 = SELF; SYMBOL "\\SUP"; p2 = SELF -> return_term loc (Layout (Sup (p1, p2))) | p1 = SELF; SYMBOL "\\BELOW"; p2 = SELF -> return_term loc (Layout (Below (p1, p2))) | p1 = SELF; SYMBOL "\\ABOVE"; p2 = SELF -> return_term loc (Layout (Above (p1, p2))) | SYMBOL "["; p1 = l1_pattern; SYMBOL "\\OVER"; p2 = l1_pattern; SYMBOL "]" -> return_term loc (Layout (Over (boxify p1, boxify p2))) | SYMBOL "["; p1 = l1_pattern; SYMBOL "\\ATOP"; p2 = l1_pattern; SYMBOL "]" -> return_term loc (Layout (Atop (boxify p1, boxify p2))) (* | SYMBOL "\\ARRAY"; p = SELF; csep = OPT field_sep; rsep = OPT row_sep -> return_term loc (Array (p, csep, rsep)) *) | SYMBOL "\\FRAC"; p1 = SELF; p2 = SELF -> return_term loc (Layout (Frac (p1, p2))) | SYMBOL "\\SQRT"; p = SELF -> return_term loc (Layout (Sqrt p)) | SYMBOL "\\ROOT"; index = l1_pattern; SYMBOL "\\OF"; arg = SELF -> return_term loc (Layout (Root (arg, Layout (Box (H, index))))) | SYMBOL "\\HBOX"; SYMBOL "["; p = l1_pattern; SYMBOL "]" -> return_term loc (Layout (Box (H, p))) | SYMBOL "\\VBOX"; SYMBOL "["; p = l1_pattern; SYMBOL "]" -> return_term loc (Layout (Box (V, p))) | SYMBOL "\\BREAK" -> return_term loc (Layout Break) | SYMBOL "["; p = l1_pattern; SYMBOL "]" -> return_term loc (boxify p) | SYMBOL "["; p = l1_pattern; SYMBOL "\\AS"; id = IDENT; SYMBOL "]" -> return_term loc (Variable (Ascription (Layout (Box (H, p)), id))) ] | "simple" NONA [ m = l1_magic_pattern -> return_term loc (Magic m) | v = l1_pattern_variable -> return_term loc (Variable v) | l = literal -> return_term loc (Literal l) ] ]; (* }}} *) (* {{{ Grammar for ast patterns, notation level 2 *) level2_pattern: [ [ p = l2_pattern -> p ] ]; sort: [ [ SYMBOL "\\PROP" -> `Prop | SYMBOL "\\SET" -> `Set | SYMBOL "\\TYPE" -> `Type ] ]; explicit_subst: [ [ (* TODO explicit substitution *) ] ]; meta_subst: [ [ (* TODO meta substitution *) ] ]; possibly_typed_name: [ [ SYMBOL "("; id = IDENT; SYMBOL ":"; typ = l2_pattern; SYMBOL ")" -> Cic.Name id, Some typ | id = IDENT -> Cic.Name id, None ] ]; match_pattern: [ [ id = IDENT -> id, [] | SYMBOL "("; id = IDENT; vars = LIST1 possibly_typed_name; SYMBOL ")" -> id, vars ] ]; binder: [ [ SYMBOL <:unicode> (* Π *) -> `Pi | SYMBOL <:unicode> (* ∃ *) -> `Exists | SYMBOL <:unicode> (* ∀ *) -> `Forall | SYMBOL <:unicode> (* λ *) -> `Lambda ] ]; bound_names: [ [ vars = LIST1 IDENT SEP SYMBOL ","; ty = OPT [ SYMBOL ":"; p = l2_pattern -> p ] -> [ vars, ty ] | clusters = LIST1 [ SYMBOL "("; vars = LIST1 IDENT SEP SYMBOL ","; ty = OPT [ SYMBOL ":"; p = l2_pattern -> p ]; SYMBOL ")" -> vars, ty ] -> clusters ] ]; induction_kind: [ [ IDENT "rec" -> `Inductive | IDENT "corec" -> `CoInductive ] ]; let_defs: [ [ defs = LIST1 [ name = IDENT; args = bound_names; index_name = OPT [ IDENT "on"; id = IDENT -> id ]; ty = OPT [ SYMBOL ":" ; p = l2_pattern -> p ]; SYMBOL <:unicode> (* ≝ *); body = l2_pattern -> let body = fold_binder `Lambda args body in let ty = match ty with | None -> None | Some ty -> Some (fold_binder `Pi args ty) in let rec position_of name p = function | [] -> None, p | n :: _ when n = name -> Some p, p | _ :: tl -> position_of name (p + 1) tl in let rec find_arg name n = function | [] -> fail loc (sprintf "Argument %s not found" name) | (l,_) :: tl -> (match position_of name 0 l with | None, len -> find_arg name (n + len) tl | Some where, len -> n + where) in let index = match index_name with | None -> 0 | Some name -> find_arg name 0 args in (Cic.Name name, ty), body, index ] SEP IDENT "and" -> defs ] ]; l2_pattern_variable: [ [ SYMBOL "\\NUM"; id = IDENT -> NumVar id | SYMBOL "\\IDENT"; id = IDENT -> IdentVar id | SYMBOL "\\FRESH"; id = IDENT -> FreshVar id ] ]; l2_magic_pattern: [ [ SYMBOL "\\FOLD"; kind = [ IDENT "left" -> `Left | IDENT "right" -> `Right ]; base = l2_pattern; SYMBOL "\\LAMBDA"; id = IDENT; recursive = l2_pattern -> Fold (kind, base, [id], recursive) | SYMBOL "\\DEFAULT"; some = l2_pattern; none = l2_pattern -> Default (some, none) ] ]; l2_pattern: [ "0" [ ] | "10" NONA (* let in *) [ IDENT "let"; var = possibly_typed_name; SYMBOL <:unicode> (* ≝ *); p1 = l2_pattern; "in"; p2 = l2_pattern -> return_term loc (LetIn (var, p1, p2)) | IDENT "let"; k = induction_kind; defs = let_defs; IDENT "in"; body = l2_pattern -> return_term loc (LetRec (k, defs, body)) ] | "20" RIGHTA (* binder *) [ b = binder; names = bound_names; SYMBOL "."; body = l2_pattern -> return_term loc (fold_binder b names body) ] | "30" [ ] | "40" [ ] | "50" [ ] | "60" [ ] | "70" LEFTA (* apply *) [ p1 = l2_pattern; p2 = l2_pattern -> let rec aux = function | Appl (hd :: tl) | AttributedTerm (_, Appl (hd :: tl)) -> aux hd @ tl | term -> [term] in return_term loc (Appl (aux p1 @ [p2])) ] | "80" [ ] | "90" NONA (* simple *) [ id = IDENT -> return_term loc (Ident (id, None)) | id = IDENT; s = explicit_subst -> return_term loc (Ident (id, Some s)) | u = URI -> return_term loc (Uri (u, None)) | n = NUMBER -> return_term loc (Num (n, 0)) | IMPLICIT -> return_term loc (Implicit) | m = META -> return_term loc (Meta (int_of_string m, [])) | m = META; s = meta_subst -> return_term loc (Meta (int_of_string m, s)) | s = sort -> return_term loc (Sort s) | s = SYMBOL -> return_term loc (Symbol (s, 0)) | outtyp = OPT [ SYMBOL "["; ty = l2_pattern; SYMBOL "]" -> ty ]; IDENT "match"; t = l2_pattern; indty_ident = OPT [ SYMBOL ":"; id = IDENT -> id ]; IDENT "with"; SYMBOL "["; patterns = LIST0 [ lhs = match_pattern; SYMBOL <:unicode> (* ⇒ *); rhs = l2_pattern -> lhs, rhs ] SEP SYMBOL "|"; SYMBOL "]" -> return_term loc (Case (t, indty_ident, outtyp, patterns)) | SYMBOL "("; p1 = l2_pattern; SYMBOL ":"; p2 = l2_pattern; SYMBOL ")" -> return_term loc (Appl [ Symbol ("cast", 0); p1; p2 ]) | SYMBOL "("; p = l2_pattern; SYMBOL ")" -> p | v = l2_pattern_variable -> return_term loc (Variable v) | m = l2_magic_pattern -> return_term loc (Magic m) ] | "100" [ ] ]; (* }}} *) (* {{{ Grammar for interpretation, notation level 3 *) argument: [ [ id = IDENT -> IdentArg id | SYMBOL <:unicode> (* η *); SYMBOL "."; a = SELF -> EtaArg (None, a) | SYMBOL <:unicode> (* η *); id = IDENT; SYMBOL "."; a = SELF -> EtaArg (Some id, a) ] ]; level3_term: [ [ u = URI -> UriPattern u | a = argument -> ArgPattern a | SYMBOL "("; terms = LIST1 SELF; SYMBOL ")" -> (match terms with | [] -> assert false | [term] -> term | terms -> ApplPattern terms) ] ]; (* }}} *) (* {{{ Notation glues *) associativity: [ [ IDENT "left"; IDENT "associative" -> `Left | IDENT "right"; IDENT "associative" -> `Right ] ]; precedence: [ [ IDENT "at"; IDENT "precedence"; n = NUMBER -> n ] ]; notation: [ [ IDENT "notation"; p1 = level1_pattern; IDENT "for"; p2 = level2_pattern; assoc = OPT associativity; prec = OPT precedence -> () ] ]; interpretation: [ [ IDENT "interpretation"; s = SYMBOL; args = LIST1 argument; IDENT "as"; t = level3_term -> () ] ]; (* }}} *) END let exc_located_wrapper f = try f () with | Stdpp.Exc_located (floc, Stream.Error msg) -> raise (Parse_error (floc, msg)) | Stdpp.Exc_located (floc, exn) -> raise (Parse_error (floc, (Printexc.to_string exn))) let parse_syntax_pattern stream = exc_located_wrapper (fun () -> Grammar.Entry.parse level1_pattern stream) let parse_ast_pattern stream = exc_located_wrapper (fun () -> Grammar.Entry.parse level2_pattern stream) let parse_interpretation stream = exc_located_wrapper (fun () -> Grammar.Entry.parse level3_term stream) (** {2 Grammar extension} *) type associativity_kind = [ `Left | `Right | `None ] let symbol s = Gramext.Stoken ("SYMBOL", s) let ident s = Gramext.Stoken ("IDENT", s) let number s = Gramext.Stoken ("NUMBER", s) let term = Gramext.Sself type env_type = (string * (value_type * value)) list let make_action action = let rec aux (vl : env_type) = function [] -> Gramext.action (fun (loc: location) -> action vl loc) | None :: tl -> Gramext.action (fun _ -> aux vl tl) | Some (name, typ) :: tl -> (* i tipi servono? Magari servono solo quando si verifica la * correttezza della notazione? *) Gramext.action (fun (v: value) -> aux ((name, (typ, v))::vl) tl) in aux [] let flatten_opt = let rec aux acc = function [] -> List.rev acc | None::tl -> aux acc tl | Some hd::tl -> aux (hd::acc) tl in aux [] (* given a level 1 pattern computes the new RHS of "term" grammar entry *) let extract_term_production pattern = let rec aux = function | Literal l -> aux_literal l | Layout l -> aux_layout l | Magic m -> aux_magic m | Variable v -> aux_variable v | _ -> assert false and aux_literal = function | `Symbol s -> [None, symbol s] | `Keyword s -> [None, ident s] | `Number s -> [None, number s] and aux_layout = function | Sub (p1, p2) -> aux p1 @ [None, symbol "\\SUB"] @ aux p2 | Sup (p1, p2) -> aux p1 @ [None, symbol "\\SUP"] @ aux p2 | Below (p1, p2) -> aux p1 @ [None, symbol "\\BELOW"] @ aux p2 | Above (p1, p2) -> aux p1 @ [None, symbol "\\ABOVE"] @ aux p2 | Frac (p1, p2) -> aux p1 @ [None, symbol "\\FRAC"] @ aux p2 | Atop (p1, p2) -> aux p1 @ [None, symbol "\\ATOP"] @ aux p2 | Over (p1, p2) -> aux p1 @ [None, symbol "\\OVER"] @ aux p2 | Root (p1, p2) -> [None, symbol "\\ROOT"] @ aux p2 @ [None, symbol "\\OF"] @ aux p1 | Sqrt p -> [None, symbol "\\SQRT"] @ aux p | Break -> [] | Box (_, pl) -> List.flatten (List.map aux pl) and aux_magic = function | Opt p -> let p_bindings, p_atoms = List.split (aux p) in let p_names = flatten_opt p_bindings in [ None, Gramext.srules [ [ Gramext.Sopt (Gramext.srules [ p_atoms, (make_action (fun (env : env_type) (loc : location) -> env) p_bindings)])], Gramext.action (fun (env_opt : env_type option) (loc : location) -> match env_opt with Some env -> List.map (fun (name, (typ, v)) -> (name, (OptType typ, OptValue (Some v)))) env | None -> List.map (fun (name, typ) -> (name, (OptType typ, OptValue None))) p_names) ]] | _ -> assert false and aux_variable = function | NumVar s -> [Some (s, NumType), number ""] | TermVar s -> [Some (s, TermType), term] | IdentVar s -> [Some (s, StringType), ident ""] | Ascription (p, s) -> assert false (* TODO *) | FreshVar _ -> assert false in aux pattern let level_of_int precedence = (* TODO "mod" test to be removed as soon as we add all 100 levels *) if precedence mod 10 <> 0 || precedence < 0 || precedence > 100 then raise (Level_not_found precedence); string_of_int precedence type rule_id = term Grammar.Entry.e * Token.t Gramext.g_symbol list let extend level1_pattern ?(precedence = 0) ?associativity action = let p_bindings, p_atoms = List.split (extract_term_production level1_pattern) in let level = level_of_int precedence in let p_names = flatten_opt p_bindings in let entry = Grammar.Entry.obj (level2_pattern: 'a Grammar.Entry.e) in let _ = Grammar.extend [ entry, Some (Gramext.Level level), [ Some level, (* TODO should we put None here? *) associativity, [ p_atoms, (make_action (fun (env: env_type)(loc: location) -> TermValue (action env loc)) p_bindings) ]]] in (level2_pattern, p_atoms) let delete (entry, atoms) = Grammar.delete_rule entry atoms let print_level2_pattern () = Grammar.print_entry Format.std_formatter (Grammar.Entry.obj level2_pattern); Format.pp_print_flush Format.std_formatter () (* vim:set encoding=utf8 foldmethod=marker: *)