(* Copyright (C) 2004-2005, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://helm.cs.unibo.it/ *) open Printf type pattern_id = int type interpretation_id = pattern_id type pretty_printer_id = pattern_id module Ast = CicNotationPt type term_info = { sort: (Cic.id, Ast.sort_kind) Hashtbl.t; uri: (Cic.id, string) Hashtbl.t; } let get_types uri = let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in match o with | Cic.InductiveDefinition (l,_,_,_) -> l | _ -> assert false let name_of_inductive_type uri i = let types = get_types uri in let (name, _, _, _) = try List.nth types i with Not_found -> assert false in name (* returns pairs *) let constructors_of_inductive_type uri i = let types = get_types uri in let (_, _, _, constructors) = try List.nth types i with Not_found -> assert false in constructors (* returns name only *) let constructor_of_inductive_type uri i j = (try fst (List.nth (constructors_of_inductive_type uri i) (j-1)) with Not_found -> assert false) let idref id t = Ast.AttributedTerm (`IdRef id, t) let resolve_binder = function | `Lambda -> "\\lambda" | `Pi -> "\\Pi" | `Forall -> "\\forall" | `Exists -> "\\exists" let add_level_info prec assoc t = Ast.AttributedTerm (`Level (prec, assoc), t) let rec remove_level_info = function | Ast.AttributedTerm (`Level _, t) -> remove_level_info t | Ast.AttributedTerm (a, t) -> Ast.AttributedTerm (a, remove_level_info t) | t -> t let add_xml_attrs attrs t = Ast.AttributedTerm (`XmlAttrs attrs, t) let add_keyword_attrs = add_xml_attrs (RenderingAttrs.keyword_attributes `MathML) let box kind spacing indent content = Ast.Layout (Ast.Box ((kind, spacing, indent), content)) let hbox = box Ast.H let vbox = box Ast.V let hvbox = box Ast.HV let hovbox = box Ast.HOV let break = Ast.Layout Ast.Break let reset_href t = Ast.AttributedTerm (`Href [], t) let builtin_symbol s = reset_href (Ast.Literal (`Symbol s)) let keyword k = reset_href (add_keyword_attrs (Ast.Literal (`Keyword k))) let number s = reset_href (add_xml_attrs (RenderingAttrs.number_attributes `MathML) (Ast.Literal (`Number s))) let ident i = add_xml_attrs (RenderingAttrs.ident_attributes `MathML) (Ast.Ident (i, None)) let binder_symbol s = add_xml_attrs (RenderingAttrs.builtin_symbol_attributes `MathML) (builtin_symbol s) let string_of_sort_kind = function | `Prop -> "Prop" | `Set -> "Set" | `CProp -> "CProp" | `Type -> "Type" let pp_ast0 t k = let rec aux = function | Ast.Appl ts -> add_level_info Ast.apply_prec Ast.apply_assoc (hovbox true true (CicNotationUtil.dress break (List.map k ts))) | Ast.Binder (binder_kind, (id, ty), body) -> add_level_info Ast.binder_prec Ast.binder_assoc (hvbox false true [ binder_symbol (resolve_binder binder_kind); k id; builtin_symbol ":"; aux_ty ty; break; builtin_symbol "."; k body ]) | Ast.Case (what, indty_opt, outty_opt, patterns) -> let outty_box = match outty_opt with | None -> [] | Some outty -> [ builtin_symbol "["; remove_level_info (k outty); builtin_symbol "]"; break ] in let indty_box = match indty_opt with | None -> [] | Some indty -> [ keyword "in"; ident indty ] in let match_box = hvbox false true [ keyword "match"; break; hvbox false false ([ k what ] @ indty_box); break; keyword "with" ] in let mk_case_pattern (head, vars) = hbox true false (ident head :: List.map aux_var vars) in let patterns' = List.map (fun (lhs, rhs) -> remove_level_info (hvbox false true [ hbox false true [ mk_case_pattern lhs; builtin_symbol "\\Rightarrow" ]; break; k rhs ])) patterns in let patterns'' = let rec aux_patterns = function | [] -> assert false | [ last ] -> [ break; hbox false false [ builtin_symbol "|"; last; builtin_symbol "]" ] ] | hd :: tl -> [ break; hbox false false [ builtin_symbol "|"; hd ] ] @ aux_patterns tl in match patterns' with | [] -> [ hbox false false [ builtin_symbol "["; builtin_symbol "]" ] ] | [ one ] -> [ hbox false false [ builtin_symbol "["; one; builtin_symbol "]" ] ] | hd :: tl -> hbox false false [ builtin_symbol "["; hd ] :: aux_patterns tl in add_level_info Ast.simple_prec Ast.simple_assoc (hvbox false false [ hvbox false false (outty_box @ [ match_box ]); break; hbox false false [ hvbox false false patterns'' ] ]) | Ast.Cast (bo, ty) -> add_level_info Ast.simple_prec Ast.simple_assoc (hvbox false true [ builtin_symbol "("; k bo; break; builtin_symbol ":"; k ty; builtin_symbol ")"]) | Ast.LetIn (var, s, t) -> add_level_info Ast.let_in_prec Ast.let_in_assoc (hvbox false true [ hvbox false true [ keyword "let"; hvbox false true [ aux_var var; builtin_symbol "\\def"; break; k s ]; break; keyword "in" ]; k t ]) | Ast.LetRec (rec_kind, funs, where) -> let rec_op = match rec_kind with `Inductive -> "rec" | `CoInductive -> "corec" in let mk_fun (var, body, _) = aux_var var, k body in let mk_funs = List.map mk_fun in let fst_fun, tl_funs = match mk_funs funs with hd :: tl -> hd, tl | [] -> assert false in let fst_row = let (name, body) = fst_fun in hvbox false true [ keyword "let"; keyword rec_op; name; builtin_symbol "\\def"; break; body ] in let tl_rows = List.map (fun (name, body) -> [ break; hvbox false true [ keyword "and"; name; builtin_symbol "\\def"; break; body ] ]) tl_funs in add_level_info Ast.let_in_prec Ast.let_in_assoc ((hvbox false false (fst_row :: List.flatten tl_rows @ [ break; keyword "in"; break; k where ]))) | Ast.Implicit -> builtin_symbol "?" | Ast.Meta (n, l) -> let local_context l = CicNotationUtil.dress (builtin_symbol ";") (List.map (function None -> builtin_symbol "_" | Some t -> k t) l) in hbox false false ([ builtin_symbol "?"; number (string_of_int n) ] @ (if l <> [] then local_context l else [])) | Ast.Sort sort -> aux_sort sort | Ast.Num _ | Ast.Symbol _ | Ast.Ident (_, None) | Ast.Ident (_, Some []) | Ast.Uri (_, None) | Ast.Uri (_, Some []) | Ast.Literal _ | Ast.UserInput as leaf -> leaf | t -> CicNotationUtil.visit_ast ~special_k k t and aux_sort sort_kind = add_xml_attrs (RenderingAttrs.keyword_attributes `MathML) (Ast.Ident (string_of_sort_kind sort_kind, None)) and aux_ty = function | None -> builtin_symbol "?" | Some ty -> k ty and aux_var = function | name, Some ty -> hvbox false true [ builtin_symbol "("; name; builtin_symbol ":"; break; k ty; builtin_symbol ")" ] | name, None -> name and special_k = function | Ast.AttributedTerm (attrs, t) -> Ast.AttributedTerm (attrs, k t) | t -> prerr_endline ("unexpected special: " ^ CicNotationPp.pp_term t); assert false in aux t let ast_of_acic0 term_info acic k = let k = k term_info in let register_uri id uri = Hashtbl.add term_info.uri id uri in let sort_of_id id = try Hashtbl.find term_info.sort id with Not_found -> prerr_endline (sprintf "warning: sort of id %s not found, using Type" id); `Type in let aux_substs substs = Some (List.map (fun (uri, annterm) -> (UriManager.name_of_uri uri, k annterm)) substs) in let aux_context context = List.map (function | None -> None | Some annterm -> Some (k annterm)) context in let aux = function | Cic.ARel (id,_,_,b) -> idref id (Ast.Ident (b, None)) | Cic.AVar (id,uri,substs) -> register_uri id (UriManager.string_of_uri uri); idref id (Ast.Ident (UriManager.name_of_uri uri, aux_substs substs)) | Cic.AMeta (id,n,l) -> idref id (Ast.Meta (n, aux_context l)) | Cic.ASort (id,Cic.Prop) -> idref id (Ast.Sort `Prop) | Cic.ASort (id,Cic.Set) -> idref id (Ast.Sort `Set) | Cic.ASort (id,Cic.Type _) -> idref id (Ast.Sort `Type) | Cic.ASort (id,Cic.CProp) -> idref id (Ast.Sort `CProp) | Cic.AImplicit _ -> assert false | Cic.AProd (id,n,s,t) -> let binder_kind = match sort_of_id id with | `Set | `Type -> `Pi | `Prop | `CProp -> `Forall in idref id (Ast.Binder (binder_kind, (CicNotationUtil.name_of_cic_name n, Some (k s)), k t)) | Cic.ACast (id,v,t) -> idref id (Ast.Cast (k v, k t)) | Cic.ALambda (id,n,s,t) -> idref id (Ast.Binder (`Lambda, (CicNotationUtil.name_of_cic_name n, Some (k s)), k t)) | Cic.ALetIn (id,n,s,t) -> idref id (Ast.LetIn ((CicNotationUtil.name_of_cic_name n, None), k s, k t)) | Cic.AAppl (aid,args) -> idref aid (Ast.Appl (List.map k args)) | Cic.AConst (id,uri,substs) -> register_uri id (UriManager.string_of_uri uri); idref id (Ast.Ident (UriManager.name_of_uri uri, aux_substs substs)) | Cic.AMutInd (id,uri,i,substs) as t -> let name = name_of_inductive_type uri i in let uri_str = UriManager.string_of_uri uri in let puri_str = uri_str ^ "#xpointer(1/" ^ (string_of_int (i + 1)) ^ ")" in register_uri id puri_str; idref id (Ast.Ident (name, aux_substs substs)) | Cic.AMutConstruct (id,uri,i,j,substs) -> let name = constructor_of_inductive_type uri i j in let uri_str = UriManager.string_of_uri uri in let puri_str = sprintf "%s#xpointer(1/%d/%d)" uri_str (i + 1) j in register_uri id puri_str; idref id (Ast.Ident (name, aux_substs substs)) | Cic.AMutCase (id,uri,typeno,ty,te,patterns) -> let name = name_of_inductive_type uri typeno in let constructors = constructors_of_inductive_type uri typeno in let rec eat_branch ty pat = match (ty, pat) with | Cic.Prod (_, _, t), Cic.ALambda (_, name, s, t') -> let (cv, rhs) = eat_branch t t' in (CicNotationUtil.name_of_cic_name name, Some (k s)) :: cv, rhs | _, _ -> [], k pat in let patterns = List.map2 (fun (name, ty) pat -> let (capture_variables, rhs) = eat_branch ty pat in ((name, capture_variables), rhs)) constructors patterns in idref id (Ast.Case (k te, Some name, Some (k ty), patterns)) | Cic.AFix (id, no, funs) -> let defs = List.map (fun (_, n, decr_idx, ty, bo) -> ((Ast.Ident (n, None), Some (k ty)), k bo, decr_idx)) funs in let name = try (match List.nth defs no with | (Ast.Ident (n, _), _), _, _ when n <> "_" -> n | _ -> assert false) with Not_found -> assert false in idref id (Ast.LetRec (`Inductive, defs, Ast.Ident (name, None))) | Cic.ACoFix (id, no, funs) -> let defs = List.map (fun (_, n, ty, bo) -> ((Ast.Ident (n, None), Some (k ty)), k bo, 0)) funs in let name = try (match List.nth defs no with | (Ast.Ident (n, _), _), _, _ when n <> "_" -> n | _ -> assert false) with Not_found -> assert false in idref id (Ast.LetRec (`CoInductive, defs, Ast.Ident (name, None))) in aux acic (* persistent state *) let level1_patterns21 = Hashtbl.create 211 let level2_patterns32 = Hashtbl.create 211 let interpretations = Hashtbl.create 211 (* symb -> id list ref *) let compiled21 = ref None let compiled32 = ref None let pattern21_matrix = ref [] let pattern32_matrix = ref [] let get_compiled21 () = match !compiled21 with | None -> assert false | Some f -> Lazy.force f let get_compiled32 () = match !compiled32 with | None -> assert false | Some f -> Lazy.force f let set_compiled21 f = compiled21 := Some f let set_compiled32 f = compiled32 := Some f let instantiate21 env (* precedence associativity *) l1 = let rec subst_singleton env t = CicNotationUtil.group (subst env t) and subst env = function | Ast.AttributedTerm (_, t) -> subst env t | Ast.Variable var -> let name, expected_ty = CicNotationEnv.declaration_of_var var in let ty, value = try List.assoc name env with Not_found -> assert false in assert (CicNotationEnv.well_typed ty value); (* INVARIANT *) (* following assertion should be a conditional that makes this * instantiation fail *) assert (CicNotationEnv.well_typed expected_ty value); [ CicNotationEnv.term_of_value value ] | Ast.Magic m -> subst_magic env m | Ast.Literal (`Keyword k) as t -> [ (*reset_href*) (add_keyword_attrs t) ] | Ast.Literal _ as t -> [ (*reset_href*) t ] | Ast.Layout l -> [ Ast.Layout (subst_layout env l) ] | t -> [ CicNotationUtil.visit_ast (subst_singleton env) t ] and subst_magic env = function | Ast.List0 (p, sep_opt) | Ast.List1 (p, sep_opt) -> let rec_decls = CicNotationEnv.declarations_of_term p in let rec_values = List.map (fun (n, _) -> CicNotationEnv.lookup_list env n) rec_decls in let values = CicNotationUtil.ncombine rec_values in let sep = match sep_opt with | None -> [] | Some l -> [ Ast.Literal l ] in let rec instantiate_list acc = function | [] -> List.rev acc | value_set :: [] -> let env = CicNotationEnv.combine rec_decls value_set in instantiate_list (CicNotationUtil.group (subst env p) :: acc) [] | value_set :: tl -> let env = CicNotationEnv.combine rec_decls value_set in instantiate_list (CicNotationUtil.group ((subst env p) @ sep) :: acc) tl in instantiate_list [] values | Ast.Opt p -> let opt_decls = CicNotationEnv.declarations_of_term p in let env = let rec build_env = function | [] -> [] | (name, ty) :: tl -> (* assumption: if one of the value is None then all are *) (match CicNotationEnv.lookup_opt env name with | None -> raise Exit | Some v -> (name, (ty, v)) :: build_env tl) in try build_env opt_decls with Exit -> [] in begin match env with | [] -> [] | _ -> subst env p end | _ -> assert false (* impossible *) and subst_layout env = function | Ast.Box (kind, tl) -> Ast.Box (kind, List.concat (List.map (subst env) tl)) | l -> CicNotationUtil.visit_layout (subst_singleton env) l in subst_singleton env l1 let rec pp_ast1 term = let rec pp_value = function | CicNotationEnv.NumValue _ as v -> v | CicNotationEnv.StringValue _ as v -> v (* | CicNotationEnv.TermValue t when t == term -> CicNotationEnv.TermValue (pp_ast0 t pp_ast1) *) | CicNotationEnv.TermValue t -> CicNotationEnv.TermValue (pp_ast1 t) | CicNotationEnv.OptValue None as v -> v | CicNotationEnv.OptValue (Some v) -> CicNotationEnv.OptValue (Some (pp_value v)) | CicNotationEnv.ListValue vl -> CicNotationEnv.ListValue (List.map pp_value vl) in let ast_env_of_env env = List.map (fun (var, (ty, value)) -> (var, (ty, pp_value value))) env in match term with | Ast.AttributedTerm (attrs, t) -> Ast.AttributedTerm (attrs, pp_ast1 t) | _ -> (match (get_compiled21 ()) term with | None -> pp_ast0 term pp_ast1 | Some (env, pid) -> let prec, assoc, l1 = try Hashtbl.find level1_patterns21 pid with Not_found -> assert false in add_level_info prec assoc (instantiate21 (ast_env_of_env env) l1)) let instantiate32 term_info env symbol args = let rec instantiate_arg = function | Ast.IdentArg (n, name) -> let t = (try List.assoc name env with Not_found -> assert false) in let rec count_lambda = function | Ast.Binder (`Lambda, _, body) -> 1 + count_lambda body | _ -> 0 in let rec add_lambda t n = if n > 0 then let name = CicNotationUtil.fresh_name () in Ast.Binder (`Lambda, (Ast.Ident (name, None), None), Ast.Appl [add_lambda t (n - 1); Ast.Ident (name, None)]) else t in add_lambda t (n - count_lambda t) in let head = Ast.Symbol (symbol, 0) in match args with | [] -> head | _ -> Ast.Appl (head :: List.map instantiate_arg args) let rec ast_of_acic1 term_info annterm = match (get_compiled32 ()) annterm with | None -> ast_of_acic0 term_info annterm ast_of_acic1 | Some (env, pid) -> let env' = List.map (fun (name, term) -> (name, ast_of_acic1 term_info term)) env in let _, symbol, args, _, uris = try Hashtbl.find level2_patterns32 pid with Not_found -> assert false in let ast = instantiate32 term_info env' symbol args in Ast.AttributedTerm (`IdRef (CicUtil.id_of_annterm annterm), (match uris with | [] -> ast | _ -> Ast.AttributedTerm (`Href uris, ast))) let load_patterns32 t = set_compiled32 (lazy (CicNotationMatcher.Matcher32.compiler t)) let load_patterns21 t = set_compiled21 (lazy (CicNotationMatcher.Matcher21.compiler t)) let ast_of_acic id_to_sort annterm = let term_info = { sort = id_to_sort; uri = Hashtbl.create 211 } in let ast = ast_of_acic1 term_info annterm in ast, term_info.uri let pp_ast term = (* prerr_endline ("pp_ast <- : " ^ CicNotationPp.pp_term term); *) pp_ast1 term let fresh_id = let counter = ref ~-1 in fun () -> incr counter; !counter let add_interpretation dsc (symbol, args) appl_pattern = let id = fresh_id () in let uris = CicNotationUtil.find_appl_pattern_uris appl_pattern in Hashtbl.add level2_patterns32 id (dsc, symbol, args, appl_pattern, uris); pattern32_matrix := (appl_pattern, id) :: !pattern32_matrix; load_patterns32 !pattern32_matrix; (try let ids = Hashtbl.find interpretations symbol in ids := id :: !ids with Not_found -> Hashtbl.add interpretations symbol (ref [id])); id exception Interpretation_not_found exception Pretty_printer_not_found let rec list_uniq = function | [] -> [] | h::[] -> [h] | h1::h2::tl when h1 = h2 -> list_uniq (h2 :: tl) | h1::tl (* when h1 <> h2 *) -> h1 :: list_uniq tl let lookup_interpretations symbol = try list_uniq (List.sort Pervasives.compare (List.map (fun id -> let (dsc, _, args, appl_pattern, _) = try Hashtbl.find level2_patterns32 id with Not_found -> assert false in dsc, args, appl_pattern) !(Hashtbl.find interpretations symbol))) with Not_found -> raise Interpretation_not_found let add_pretty_printer ~precedence ~associativity l2 l1 = let id = fresh_id () in let l2' = CicNotationUtil.strip_attributes l2 in Hashtbl.add level1_patterns21 id (precedence, associativity, l1); pattern21_matrix := (l2', id) :: !pattern21_matrix; load_patterns21 !pattern21_matrix; id let remove_interpretation id = (try let _, symbol, _, _, _ = Hashtbl.find level2_patterns32 id in let ids = Hashtbl.find interpretations symbol in ids := List.filter ((<>) id) !ids; Hashtbl.remove level2_patterns32 id; with Not_found -> raise Interpretation_not_found); pattern32_matrix := List.filter (fun (_, id') -> id <> id') !pattern32_matrix; load_patterns32 !pattern32_matrix let remove_pretty_printer id = (try Hashtbl.remove level1_patterns21 id; with Not_found -> raise Pretty_printer_not_found); pattern21_matrix := List.filter (fun (_, id') -> id <> id') !pattern21_matrix; load_patterns21 !pattern21_matrix let _ = load_patterns21 []; load_patterns32 []