(* Copyright (C) 2004-2005, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://helm.cs.unibo.it/ *) open Printf type pattern_id = int type interpretation_id = pattern_id type pretty_printer_id = pattern_id let default_prec = 50 let default_assoc = Gramext.NonA type term_info = { sort: (Cic.id, CicNotationPt.sort_kind) Hashtbl.t; uri: (Cic.id, string) Hashtbl.t; } let warning s = prerr_endline ("CicNotation WARNING: " ^ s) let get_types uri = let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in match o with | Cic.InductiveDefinition (l,_,_,_) -> l | _ -> assert false let name_of_inductive_type uri i = let types = get_types uri in let (name, _, _, _) = try List.nth types i with Not_found -> assert false in name (* returns pairs *) let constructors_of_inductive_type uri i = let types = get_types uri in let (_, _, _, constructors) = try List.nth types i with Not_found -> assert false in constructors (* returns name only *) let constructor_of_inductive_type uri i j = (try fst (List.nth (constructors_of_inductive_type uri i) (j-1)) with Not_found -> assert false) module Ast = CicNotationPt module Parser = CicNotationParser let string_of_name = function | Cic.Name s -> s | Cic.Anonymous -> "_" let ident_of_name n = Ast.Ident (string_of_name n, None) let idref id t = Ast.AttributedTerm (`IdRef id, t) let resolve_binder = function | `Lambda -> "\\lambda" | `Pi -> "\\Pi" | `Forall -> "\\forall" | `Exists -> "\\exists" let pp_ast0 t k = let rec aux = function | Ast.Appl ts -> Ast.AttributedTerm (`Level (Parser.apply_prec, Parser.apply_assoc), Ast.Layout (Ast.Box ((Ast.HOV, true, true), List.map k ts))) | Ast.Binder (`Forall, (Ast.Ident ("_", _), ty), body) | Ast.Binder (`Pi, (Ast.Ident ("_", _), ty), body) -> Ast.AttributedTerm (`Level (Parser.binder_prec, Parser.binder_assoc), Ast.Layout (Ast.Box ((Ast.HV, false, true), [ aux_ty ty; Ast.Layout (Ast.Box ((Ast.H, false, false), [ Ast.Literal (`Symbol "\\to"); k body]))]))) | Ast.Binder (binder_kind, (id, ty), body) -> Ast.AttributedTerm (`Level (Parser.binder_prec, Parser.binder_assoc), Ast.Layout (Ast.Box ((Ast.HV, false, true), [ Ast.Layout (Ast.Box ((Ast.H, false, false), [ Ast.Literal (`Symbol (resolve_binder binder_kind)); k id; Ast.Literal (`Symbol ":"); aux_ty ty ])); Ast.Layout (Ast.Box ((Ast.H, false, false), [ Ast.Literal (`Symbol "."); k body ]))]))) | t -> CicNotationUtil.visit_ast ~special_k k t and aux_ty = function | None -> Ast.Literal (`Symbol "?") | Some ty -> k ty and special_k = function | Ast.AttributedTerm (attrs, t) -> Ast.AttributedTerm (attrs, k t) | _ -> assert false in aux t let ast_of_acic0 term_info acic k = (* prerr_endline "ast_of_acic0"; *) let k = k term_info in let register_uri id uri = Hashtbl.add term_info.uri id uri in let sort_of_id id = try Hashtbl.find term_info.sort id with Not_found -> assert false in let aux_substs substs = Some (List.map (fun (uri, annterm) -> (UriManager.name_of_uri uri, k annterm)) substs) in let aux_context context = List.map (function | None -> None | Some annterm -> Some (k annterm)) context in let aux = function | Cic.ARel (id,_,_,b) -> idref id (Ast.Ident (b, None)) | Cic.AVar (id,uri,substs) -> register_uri id (UriManager.string_of_uri uri); idref id (Ast.Ident (UriManager.name_of_uri uri, aux_substs substs)) | Cic.AMeta (id,n,l) -> idref id (Ast.Meta (n, aux_context l)) | Cic.ASort (id,Cic.Prop) -> idref id (Ast.Sort `Prop) | Cic.ASort (id,Cic.Set) -> idref id (Ast.Sort `Set) | Cic.ASort (id,Cic.Type _) -> idref id (Ast.Sort `Type) | Cic.ASort (id,Cic.CProp) -> idref id (Ast.Sort `CProp) | Cic.AImplicit _ -> assert false | Cic.AProd (id,n,s,t) -> let binder_kind = match sort_of_id id with | `Set | `Type -> `Pi | `Prop | `CProp -> `Forall in idref id (Ast.Binder (binder_kind, (ident_of_name n, Some (k s)), k t)) | Cic.ACast (id,v,t) -> idref id (Ast.Appl [idref id (Ast.Symbol ("cast", 0)); k v; k t]) | Cic.ALambda (id,n,s,t) -> idref id (Ast.Binder (`Lambda, (ident_of_name n, Some (k s)), k t)) | Cic.ALetIn (id,n,s,t) -> idref id (Ast.LetIn ((ident_of_name n, None), k s, k t)) | Cic.AAppl (aid,args) -> idref aid (Ast.Appl (List.map k args)) | Cic.AConst (id,uri,substs) -> register_uri id (UriManager.string_of_uri uri); idref id (Ast.Ident (UriManager.name_of_uri uri, aux_substs substs)) | Cic.AMutInd (id,uri,i,substs) as t -> let name = name_of_inductive_type uri i in let uri_str = UriManager.string_of_uri uri in let puri_str = uri_str ^ "#xpointer(1/" ^ (string_of_int (i + 1)) ^ ")" in register_uri id puri_str; idref id (Ast.Ident (name, aux_substs substs)) | Cic.AMutConstruct (id,uri,i,j,substs) -> let name = constructor_of_inductive_type uri i j in let uri_str = UriManager.string_of_uri uri in let puri_str = sprintf "%s#xpointer(1/%d/%d)" uri_str (i + 1) j in register_uri id puri_str; idref id (Ast.Ident (name, aux_substs substs)) | Cic.AMutCase (id,uri,typeno,ty,te,patterns) -> let name = name_of_inductive_type uri typeno in let constructors = constructors_of_inductive_type uri typeno in let rec eat_branch ty pat = match (ty, pat) with | Cic.Prod (_, _, t), Cic.ALambda (_, name, s, t') -> let (cv, rhs) = eat_branch t t' in (ident_of_name name, Some (k s)) :: cv, rhs | _, _ -> [], k pat in let patterns = List.map2 (fun (name, ty) pat -> let (capture_variables, rhs) = eat_branch ty pat in ((name, capture_variables), rhs)) constructors patterns in idref id (Ast.Case (k te, Some name, Some (k ty), patterns)) | Cic.AFix (id, no, funs) -> let defs = List.map (fun (_, n, decr_idx, ty, bo) -> ((Ast.Ident (n, None), Some (k ty)), k bo, decr_idx)) funs in let name = try (match List.nth defs no with | (Ast.Ident (n, _), _), _, _ when n <> "_" -> n | _ -> assert false) with Not_found -> assert false in idref id (Ast.LetRec (`Inductive, defs, Ast.Ident (name, None))) | Cic.ACoFix (id, no, funs) -> let defs = List.map (fun (_, n, ty, bo) -> ((Ast.Ident (n, None), Some (k ty)), k bo, 0)) funs in let name = try (match List.nth defs no with | (Ast.Ident (n, _), _), _, _ when n <> "_" -> n | _ -> assert false) with Not_found -> assert false in idref id (Ast.LetRec (`CoInductive, defs, Ast.Ident (name, None))) in aux acic (* persistent state *) let level1_patterns21 = Hashtbl.create 211 let level2_patterns32 = Hashtbl.create 211 let (compiled21: (CicNotationPt.term -> (CicNotationEnv.t * int) option) option ref) = ref None let (compiled32: (Cic.annterm -> ((string * Cic.annterm) list * int) option) option ref) = ref None let pattern21_matrix = ref [] let pattern32_matrix = ref [] let get_compiled21 () = match !compiled21 with | None -> assert false | Some f -> f let get_compiled32 () = match !compiled32 with | None -> assert false | Some f -> f let set_compiled21 f = compiled21 := Some f let set_compiled32 f = compiled32 := Some f let instantiate21 env (* precedence associativity *) l1 = let rec subst_singleton env t = CicNotationUtil.boxify (subst env t) and subst env = function | Ast.AttributedTerm (_, t) -> subst env t | Ast.Variable var -> let name, expected_ty = CicNotationEnv.declaration_of_var var in let ty, value = try List.assoc name env with Not_found -> assert false in assert (CicNotationEnv.well_typed ty value); (* INVARIANT *) (* following assertion should be a conditional that makes this * instantiation fail *) assert (CicNotationEnv.well_typed expected_ty value); [ CicNotationEnv.term_of_value value ] | Ast.Magic m -> subst_magic env m | Ast.Literal _ as t -> [ t ] | Ast.Layout l -> [ Ast.Layout (subst_layout env l) ] | t -> [ CicNotationUtil.visit_ast (subst_singleton env) t ] and subst_magic env = function | Ast.List0 (p, sep_opt) | Ast.List1 (p, sep_opt) -> let rec_decls = CicNotationEnv.declarations_of_term p in let rec_values = List.map (fun (n, _) -> CicNotationEnv.lookup_list env n) rec_decls in let values = CicNotationUtil.ncombine rec_values in let sep = match sep_opt with | None -> [] | Some l -> [ CicNotationPt.Literal l ] in let rec instantiate_list acc = function | [] -> List.rev acc | value_set :: [] -> let env = CicNotationEnv.combine rec_decls value_set in instantiate_list ((CicNotationUtil.boxify (subst env p)) :: acc) [] | value_set :: tl -> let env = CicNotationEnv.combine rec_decls value_set in instantiate_list ((CicNotationUtil.boxify (subst env p @ sep)) :: acc) tl in instantiate_list [] values | Ast.Opt p -> let opt_decls = CicNotationEnv.declarations_of_term p in let env = let rec build_env = function | [] -> [] | (name, ty) :: tl -> (* assumption: if one of the value is None then all are *) (match CicNotationEnv.lookup_opt env name with | None -> raise Exit | Some v -> (name, (ty, v)) :: build_env tl) in try build_env opt_decls with Exit -> [] in begin match env with | [] -> [] | _ -> subst env p end | _ -> assert false (* impossible *) and subst_layout env = function | Ast.Box (kind, tl) -> Ast.Box (kind, List.concat (List.map (subst env) tl)) | l -> CicNotationUtil.visit_layout (subst_singleton env) l in subst_singleton env l1 let rec pp_ast1 term = let rec pp_value = function | CicNotationEnv.NumValue _ as v -> v | CicNotationEnv.StringValue _ as v -> v | CicNotationEnv.TermValue t -> CicNotationEnv.TermValue (pp_ast1 t) | CicNotationEnv.OptValue None as v -> v | CicNotationEnv.OptValue (Some v) -> CicNotationEnv.OptValue (Some (pp_value v)) | CicNotationEnv.ListValue vl -> CicNotationEnv.ListValue (List.map pp_value vl) in let ast_env_of_env env = List.map (fun (var, (ty, value)) -> (var, (ty, pp_value value))) env in match (get_compiled21 ()) term with | None -> pp_ast0 term pp_ast1 | Some (env, pid) -> let precedence, associativity, l1 = try Hashtbl.find level1_patterns21 pid with Not_found -> assert false in Ast.AttributedTerm (`Level (precedence, associativity), (instantiate21 (ast_env_of_env env) (* precedence associativity *) l1)) let instantiate32 term_info env symbol args = let rec instantiate_arg = function | Ast.IdentArg (n, name) -> let t = (try List.assoc name env with Not_found -> assert false) in let rec count_lambda = function | Ast.Binder (`Lambda, _, body) -> 1 + count_lambda body | _ -> 0 in let rec add_lambda t n = if n > 0 then let name = CicNotationUtil.fresh_name () in Ast.Binder (`Lambda, (Ast.Ident (name, None), None), Ast.Appl [add_lambda t (n - 1); Ast.Ident (name, None)]) else t in add_lambda t (n - count_lambda t) in let args' = List.map instantiate_arg args in Ast.Appl (Ast.Symbol (symbol, 0) :: args') let rec ast_of_acic1 term_info annterm = match (get_compiled32 ()) annterm with | None -> ast_of_acic0 term_info annterm ast_of_acic1 | Some (env, pid) -> let env' = List.map (fun (name, term) -> (name, ast_of_acic1 term_info term)) env in let symbol, args = try Hashtbl.find level2_patterns32 pid with Not_found -> assert false in instantiate32 term_info env' symbol args let load_patterns32 t = set_compiled32 (CicNotationMatcher.Matcher32.compiler t) let load_patterns21 t = set_compiled21 (CicNotationMatcher.Matcher21.compiler t) let ast_of_acic id_to_sort annterm = let term_info = { sort = id_to_sort; uri = Hashtbl.create 211 } in let ast = ast_of_acic1 term_info annterm in ast, term_info.uri let pp_ast term = pp_ast1 term let fresh_id = let counter = ref ~-1 in fun () -> incr counter; !counter let add_interpretation (symbol, args) appl_pattern = let id = fresh_id () in Hashtbl.add level2_patterns32 id (symbol, args); pattern32_matrix := (appl_pattern, id) :: !pattern32_matrix; load_patterns32 !pattern32_matrix; id let add_pretty_printer ?(precedence = default_prec) ?(associativity = default_assoc) l2 l1 = let id = fresh_id () in let l2' = CicNotationUtil.strip_attributes l2 in Hashtbl.add level1_patterns21 id (precedence, associativity, l1); pattern21_matrix := (l2', id) :: !pattern21_matrix; load_patterns21 !pattern21_matrix; id exception Interpretation_not_found exception Pretty_printer_not_found let remove_interpretation id = (try Hashtbl.remove level2_patterns32 id; with Not_found -> raise Interpretation_not_found); pattern32_matrix := List.filter (fun (_, id') -> id <> id') !pattern32_matrix; load_patterns32 !pattern32_matrix let remove_pretty_printer id = (try Hashtbl.remove level1_patterns21 id; with Not_found -> raise Pretty_printer_not_found); pattern21_matrix := List.filter (fun (_, id') -> id <> id') !pattern21_matrix; load_patterns21 !pattern21_matrix let _ = load_patterns21 []; load_patterns32 []