(* Copyright (C) 2000, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://cs.unibo.it/helm/. *) type anntypes = {annsynthesized : Cic.annterm ; annexpected : Cic.annterm option} ;; let gen_id seed = let res = "i" ^ string_of_int !seed in incr seed ; res ;; let fresh_id seed ids_to_terms ids_to_father_ids = fun father t -> let res = gen_id seed in Hashtbl.add ids_to_father_ids res father ; Hashtbl.add ids_to_terms res t ; res ;; let source_id_of_id id = "#source#" ^ id;; exception NotEnoughElements;; exception NameExpected;; (*CSC: cut&paste da cicPp.ml *) (* get_nth l n returns the nth element of the list l if it exists or *) (* raises NotEnoughElements if l has less than n elements *) let rec get_nth l n = match (n,l) with (1, he::_) -> he | (n, he::tail) when n > 1 -> get_nth tail (n-1) | (_,_) -> raise NotEnoughElements ;; let acic_of_cic_context' seed ids_to_terms ids_to_father_ids ids_to_inner_sorts ids_to_inner_types metasenv context idrefs t expectedty = let module D = DoubleTypeInference in let module T = CicTypeChecker in let module C = Cic in let fresh_id' = fresh_id seed ids_to_terms ids_to_father_ids in let terms_to_types = D.double_type_of metasenv context t expectedty in let rec aux computeinnertypes father context idrefs tt = let fresh_id'' = fresh_id' father tt in (*CSC: computeinnertypes era true, il che e' proprio sbagliato, no? *) let aux' = aux computeinnertypes (Some fresh_id'') in (* First of all we compute the inner type and the inner sort *) (* of the term. They may be useful in what follows. *) (*CSC: This is a very inefficient way of computing inner types *) (*CSC: and inner sorts: very deep terms have their types/sorts *) (*CSC: computed again and again. *) let string_of_sort t = match CicReduction.whd context t with C.Sort C.Prop -> "Prop" | C.Sort C.Set -> "Set" | C.Sort C.Type -> "Type" | _ -> assert false in let ainnertypes,innertype,innersort,expected_available = (*CSC: Here we need the algorithm for Coscoy's double type-inference *) (*CSC: (expected type + inferred type). Just for now we use the usual *) (*CSC: type-inference, but the result is very poor. As a very weak *) (*CSC: patch, I apply whd to the computed type. Full beta *) (*CSC: reduction would be a much better option. *) let {D.synthesized = synthesized; D.expected = expected} = if computeinnertypes then D.CicHash.find terms_to_types tt else (* We are already in an inner-type and Coscoy's double *) (* type inference algorithm has not been applied. *) {D.synthesized = CicReduction.whd context (T.type_of_aux' metasenv context tt) ; D.expected = None} in let innersort = T.type_of_aux' metasenv context synthesized in let ainnertypes,expected_available = if computeinnertypes then let annexpected,expected_available = match expected with None -> None,false | Some expectedty' -> Some (aux false (Some fresh_id'') context idrefs expectedty'), true in Some {annsynthesized = aux false (Some fresh_id'') context idrefs synthesized ; annexpected = annexpected }, expected_available else None,false in ainnertypes,synthesized, string_of_sort innersort, expected_available in let add_inner_type id = match ainnertypes with None -> () | Some ainnertypes -> Hashtbl.add ids_to_inner_types id ainnertypes in match tt with C.Rel n -> let id = match get_nth context n with (Some (C.Name s,_)) -> s | _ -> raise NameExpected in Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; if innersort = "Prop" && expected_available then add_inner_type fresh_id'' ; C.ARel (fresh_id'', List.nth idrefs (n-1), n, id) | C.Var (uri,exp_named_subst) -> Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; if innersort = "Prop" && expected_available then add_inner_type fresh_id'' ; let exp_named_subst' = List.map (function i,t -> i, (aux' context idrefs t)) exp_named_subst in C.AVar (fresh_id'', uri,exp_named_subst') | C.Meta (n,l) -> let (_,canonical_context,_) = List.find (function (m,_,_) -> n = m) metasenv in Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; if innersort = "Prop" && expected_available then add_inner_type fresh_id'' ; C.AMeta (fresh_id'', n, (List.map2 (fun ct t -> match (ct, t) with | None, _ -> None | _, Some t -> Some (aux' context idrefs t) | Some _, None -> assert false (* due to typing rules *)) canonical_context l)) | C.Sort s -> C.ASort (fresh_id'', s) | C.Implicit -> C.AImplicit (fresh_id'') | C.Cast (v,t) -> Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; if innersort = "Prop" then add_inner_type fresh_id'' ; C.ACast (fresh_id'', aux' context idrefs v, aux' context idrefs t) | C.Prod (n,s,t) -> Hashtbl.add ids_to_inner_sorts fresh_id'' (string_of_sort innertype) ; let sourcetype = T.type_of_aux' metasenv context s in Hashtbl.add ids_to_inner_sorts (source_id_of_id fresh_id'') (string_of_sort sourcetype) ; let n' = match n with C.Anonymous -> n | C.Name n' -> if D.does_not_occur 1 t then C.Anonymous else C.Name n' in C.AProd (fresh_id'', n', aux' context idrefs s, aux' ((Some (n, C.Decl s))::context) (fresh_id''::idrefs) t) | C.Lambda (n,s,t) -> Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; let sourcetype = T.type_of_aux' metasenv context s in Hashtbl.add ids_to_inner_sorts (source_id_of_id fresh_id'') (string_of_sort sourcetype) ; if innersort = "Prop" then begin let father_is_lambda = match father with None -> false | Some father' -> match Hashtbl.find ids_to_terms father' with C.Lambda _ -> true | _ -> false in if (not father_is_lambda) || expected_available then add_inner_type fresh_id'' end ; C.ALambda (fresh_id'',n, aux' context idrefs s, aux' ((Some (n, C.Decl s)::context)) (fresh_id''::idrefs) t) | C.LetIn (n,s,t) -> Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; if innersort = "Prop" then add_inner_type fresh_id'' ; C.ALetIn (fresh_id'', n, aux' context idrefs s, aux' ((Some (n, C.Def s))::context) (fresh_id''::idrefs) t) | C.Appl l -> Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; if innersort = "Prop" then add_inner_type fresh_id'' ; C.AAppl (fresh_id'', List.map (aux' context idrefs) l) | C.Const (uri,exp_named_subst) -> Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; if innersort = "Prop" && expected_available then add_inner_type fresh_id'' ; let exp_named_subst' = List.map (function i,t -> i, (aux' context idrefs t)) exp_named_subst in C.AConst (fresh_id'', uri, exp_named_subst') | C.MutInd (uri,tyno,exp_named_subst) -> let exp_named_subst' = List.map (function i,t -> i, (aux' context idrefs t)) exp_named_subst in C.AMutInd (fresh_id'', uri, tyno, exp_named_subst') | C.MutConstruct (uri,tyno,consno,exp_named_subst) -> Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; if innersort = "Prop" && expected_available then add_inner_type fresh_id'' ; let exp_named_subst' = List.map (function i,t -> i, (aux' context idrefs t)) exp_named_subst in C.AMutConstruct (fresh_id'', uri, tyno, consno, exp_named_subst') | C.MutCase (uri, tyno, outty, term, patterns) -> Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; if innersort = "Prop" then add_inner_type fresh_id'' ; C.AMutCase (fresh_id'', uri, tyno, aux' context idrefs outty, aux' context idrefs term, List.map (aux' context idrefs) patterns) | C.Fix (funno, funs) -> let fresh_idrefs = List.map (function _ -> gen_id seed) funs in let new_idrefs = List.rev fresh_idrefs @ idrefs in let tys = List.map (fun (name,_,ty,_) -> Some (C.Name name, C.Decl ty)) funs in Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; if innersort = "Prop" then add_inner_type fresh_id'' ; C.AFix (fresh_id'', funno, List.map2 (fun id (name, indidx, ty, bo) -> (id, name, indidx, aux' context idrefs ty, aux' (tys@context) new_idrefs bo) ) fresh_idrefs funs ) | C.CoFix (funno, funs) -> let fresh_idrefs = List.map (function _ -> gen_id seed) funs in let new_idrefs = List.rev fresh_idrefs @ idrefs in let tys = List.map (fun (name,ty,_) -> Some (C.Name name, C.Decl ty)) funs in Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; if innersort = "Prop" then add_inner_type fresh_id'' ; C.ACoFix (fresh_id'', funno, List.map2 (fun id (name, ty, bo) -> (id, name, aux' context idrefs ty, aux' (tys@context) new_idrefs bo) ) fresh_idrefs funs ) in aux true None context idrefs t ;; let acic_of_cic_context metasenv context idrefs t = let ids_to_terms = Hashtbl.create 503 in let ids_to_father_ids = Hashtbl.create 503 in let ids_to_inner_sorts = Hashtbl.create 503 in let ids_to_inner_types = Hashtbl.create 503 in let seed = ref 0 in acic_of_cic_context' seed ids_to_terms ids_to_father_ids ids_to_inner_sorts ids_to_inner_types metasenv context idrefs t, ids_to_terms, ids_to_father_ids, ids_to_inner_sorts, ids_to_inner_types ;; let acic_object_of_cic_object obj = let module C = Cic in let ids_to_terms = Hashtbl.create 503 in let ids_to_father_ids = Hashtbl.create 503 in let ids_to_inner_sorts = Hashtbl.create 503 in let ids_to_inner_types = Hashtbl.create 503 in let ids_to_conjectures = Hashtbl.create 11 in let ids_to_hypotheses = Hashtbl.create 127 in let hypotheses_seed = ref 0 in let conjectures_seed = ref 0 in let seed = ref 0 in let acic_term_of_cic_term_context' = acic_of_cic_context' seed ids_to_terms ids_to_father_ids ids_to_inner_sorts ids_to_inner_types in let acic_term_of_cic_term' = acic_term_of_cic_term_context' [] [] [] in let aobj = match obj with C.Constant (id,Some bo,ty,params) -> let abo = acic_term_of_cic_term' bo (Some ty) in let aty = acic_term_of_cic_term' ty None in C.AConstant ("mettereaposto",Some "mettereaposto2",id,Some abo,aty, params) | C.Constant (id,None,ty,params) -> let aty = acic_term_of_cic_term' ty None in C.AConstant ("mettereaposto",None,id,None,aty, params) | C.Variable (id,bo,ty,params) -> let abo = match bo with None -> None | Some bo -> Some (acic_term_of_cic_term' bo (Some ty)) in let aty = acic_term_of_cic_term' ty None in C.AVariable ("mettereaposto",id,abo,aty, params) | C.CurrentProof (id,conjectures,bo,ty,params) -> let aconjectures = List.map (function (i,canonical_context,term) as conjecture -> let cid = "c" ^ string_of_int !conjectures_seed in Hashtbl.add ids_to_conjectures cid conjecture ; incr conjectures_seed ; let idrefs',revacanonical_context = let rec aux context idrefs = function [] -> idrefs,[] | hyp::tl -> let hid = "h" ^ string_of_int !hypotheses_seed in let new_idrefs = hid::idrefs in Hashtbl.add ids_to_hypotheses hid hyp ; incr hypotheses_seed ; match hyp with (Some (n,C.Decl t)) -> let final_idrefs,atl = aux (hyp::context) new_idrefs tl in let at = acic_term_of_cic_term_context' conjectures context idrefs t None in final_idrefs,(hid,Some (n,C.ADecl at))::atl | (Some (n,C.Def t)) -> let final_idrefs,atl = aux (hyp::context) new_idrefs tl in let at = acic_term_of_cic_term_context' conjectures context idrefs t None in final_idrefs,(hid,Some (n,C.ADef at))::atl | None -> let final_idrefs,atl = aux (hyp::context) new_idrefs tl in final_idrefs,(hid,None)::atl in aux [] [] (List.rev canonical_context) in let aterm = acic_term_of_cic_term_context' conjectures canonical_context idrefs' term None in (cid,i,(List.rev revacanonical_context),aterm) ) conjectures in let abo = acic_term_of_cic_term_context' conjectures [] [] bo (Some ty) in let aty = acic_term_of_cic_term_context' conjectures [] [] ty None in C.ACurrentProof ("mettereaposto","mettereaposto2",id,aconjectures,abo,aty,params) | C.InductiveDefinition (tys,params,paramsno) -> let context = List.map (fun (name,_,arity,_) -> Some (C.Name name, C.Decl arity)) tys in let idrefs = List.map (function _ -> gen_id seed) tys in let atys = List.map2 (fun id (name,inductive,ty,cons) -> let acons = List.map (function (name,ty) -> (name, acic_term_of_cic_term_context' [] context idrefs ty None) ) cons in (id,name,inductive,acic_term_of_cic_term' ty None,acons) ) (List.rev idrefs) tys in C.AInductiveDefinition ("mettereaposto",atys,params,paramsno) in aobj,ids_to_terms,ids_to_father_ids,ids_to_inner_sorts,ids_to_inner_types, ids_to_conjectures,ids_to_hypotheses ;;