(* Copyright (C) 2004, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://helm.cs.unibo.it/ *) open Printf let fresh_binder = let counter = ref ~-1 in function | true -> incr counter; Cic.Name ("elim" ^ string_of_int !counter) | _ -> Cic.Anonymous (** verifies if a given inductive type occurs in a term in target position *) let rec recursive uri typeno subst = function | Cic.Prod (_, _, target) -> recursive uri typeno subst target | Cic.MutInd (uri', typeno', subst') | Cic.Appl (Cic.MutInd (uri', typeno', subst') :: _) -> UriManager.eq uri uri' && typeno = typeno' && subst = subst' (* | Cic.Appl args -> List.exists (recursive uri typeno subst) args *) | _ -> false let unfold_appl = function | Cic.Appl ((Cic.Appl args) :: tl) -> Cic.Appl (args @ tl) | t -> t let rec split l n = match (l,n) with (l,0) -> ([], l) | (he::tl, n) -> let (l1,l2) = split tl (n-1) in (he::l1,l2) | (_,_) -> assert false (** build elimination principle part related to a single constructor * @param paramsno number of Prod to ignore in this constructor (i.e. number of * inductive parameters) * @param dependent true if we are in the dependent case (i.e. sort <> Prop) *) let rec delta (uri, typeno, subst) dependent paramsno consno t p args = assert (subst = []); match t with | Cic.MutInd (uri', typeno', subst') when UriManager.eq uri uri' && typeno = typeno' && subst = subst' -> if dependent then (match args with | [] -> assert false | [arg] -> unfold_appl (Cic.Appl [p; arg]) | _ -> unfold_appl (Cic.Appl [p; unfold_appl (Cic.Appl args)])) else p | Cic.Appl (Cic.MutInd (uri', typeno', subst') :: tl) when UriManager.eq uri uri' && typeno = typeno' && subst = subst' -> let (lparams, rparams) = split tl paramsno in if dependent then (match args with | [] -> assert false | [arg] -> unfold_appl (Cic.Appl (p :: rparams @ [arg])) | _ -> unfold_appl (Cic.Appl (p :: rparams @ [unfold_appl (Cic.Appl args)]))) else (* non dependent *) (match rparams with | [] -> p | _ -> Cic.Appl (p :: rparams)) | Cic.Prod (binder, src, tgt) -> if recursive uri typeno subst src then let args = List.map (CicSubstitution.lift 2) args in let phi = let src = CicSubstitution.lift 1 src in delta (uri, typeno, subst) dependent paramsno consno src (CicSubstitution.lift 1 p) [Cic.Rel 1] in let tgt = CicSubstitution.lift 1 tgt in Cic.Prod (fresh_binder dependent, src, Cic.Prod (Cic.Anonymous, phi, delta (uri, typeno, subst) dependent paramsno consno tgt (CicSubstitution.lift 2 p) (args @ [Cic.Rel 2]))) else (* non recursive *) let args = List.map (CicSubstitution.lift 1) args in Cic.Prod (fresh_binder dependent, src, delta (uri, typeno, subst) dependent paramsno consno tgt (CicSubstitution.lift 1 p) (args @ [Cic.Rel 1])) | _ -> assert false let rec strip_left_params consno leftno = function | t when leftno = 0 -> t (* no need to lift, the term is (hopefully) closed *) | Cic.Prod (_, _, tgt) (* when leftno > 0 *) -> (* after stripping the parameters we lift of consno. consno is 1 based so, * the first constructor will be lifted by 1 (for P), the second by 2 (1 * for P and 1 for the 1st constructor), and so on *) if leftno = 1 then CicSubstitution.lift consno tgt else strip_left_params consno (leftno - 1) tgt | _ -> assert false let delta (ury, typeno, subst) dependent paramsno consno t p args = let t = strip_left_params consno paramsno t in delta (ury, typeno, subst) dependent paramsno consno t p args let rec add_params indno ty eliminator = if indno = 0 then eliminator else match ty with | Cic.Prod (binder, src, tgt) -> Cic.Prod (binder, src, add_params (indno - 1) tgt eliminator) | _ -> assert false let rec mk_rels consno = function | 0 -> [] | n -> Cic.Rel (n+consno) :: mk_rels consno (n-1) let rec strip_pi = function | Cic.Prod (_, _, tgt) -> strip_pi tgt | t -> t let rec count_pi = function | Cic.Prod (_, _, tgt) -> count_pi tgt + 1 | t -> 0 let rec type_of_p sort dependent leftno indty = function | Cic.Prod (n, src, tgt) when leftno = 0 -> Cic.Prod (n, src, type_of_p sort dependent leftno indty tgt) | Cic.Prod (_, _, tgt) -> type_of_p sort dependent (leftno - 1) indty tgt | t -> if dependent then Cic.Prod (Cic.Anonymous, indty, Cic.Sort sort) else Cic.Sort sort let rec add_right_pi dependent strip liftno liftfrom rightno indty = function | Cic.Prod (_, src, tgt) when strip = 0 -> Cic.Prod (fresh_binder true, CicSubstitution.lift_from (liftfrom + 1) liftno src, add_right_pi dependent strip liftno (liftfrom + 1) rightno indty tgt) | Cic.Prod (_, _, tgt) -> add_right_pi dependent (strip - 1) liftno liftfrom rightno indty tgt | t -> if dependent then Cic.Prod (fresh_binder dependent, CicSubstitution.lift_from (rightno + 1) liftno indty, Cic.Appl (Cic.Rel (1 + liftno + rightno) :: mk_rels 0 (rightno + 1))) else Cic.Prod (Cic.Anonymous, CicSubstitution.lift_from (rightno + 1) liftno indty, if rightno = 0 then Cic.Rel (1 + liftno + rightno) else Cic.Appl (Cic.Rel (1 + liftno + rightno) :: mk_rels 1 rightno)) let rec add_right_lambda dependent strip liftno liftfrom rightno indty case = function | Cic.Prod (_, src, tgt) when strip = 0 -> Cic.Lambda (fresh_binder true, CicSubstitution.lift_from (liftfrom + 1) liftno src, add_right_lambda dependent strip liftno (liftfrom + 1) rightno indty case tgt) | Cic.Prod (_, _, tgt) -> add_right_lambda dependent (strip - 1) liftno liftfrom rightno indty case tgt | t -> Cic.Lambda (fresh_binder true, CicSubstitution.lift_from (rightno + 1) liftno indty, case) exception Failure of string let string_of_sort = function | Cic.Prop -> "Prop" | Cic.CProp -> "CProp" | Cic.Set -> "Set" | Cic.Type _ -> "Type" let elim_of ?(sort = Cic.Type (CicUniv.fresh ())) uri typeno = let (obj, univ) = (CicEnvironment.get_obj uri CicUniv.empty_ugraph) in let subst = [] in match obj with | Cic.InductiveDefinition (indTypes, params, leftno) -> let (name, inductive, ty, constructors) = try List.nth indTypes typeno with Failure _ -> assert false in let paramsno = count_pi ty in (* number of (left or right) parameters *) let rightno = paramsno - leftno in let dependent = (strip_pi ty <> Cic.Sort Cic.Prop) in let conslen = List.length constructors in let consno = ref (conslen + 1) in if (not dependent) && (sort <> Cic.Prop) && (conslen > 1) then raise (Failure (sprintf "can't eliminate from Prop to %s" (string_of_sort sort))); let indty = let indty = Cic.MutInd (uri, typeno, subst) in if paramsno = 0 then indty else Cic.Appl (indty :: mk_rels 0 paramsno) in let mk_constructor consno = let constructor = Cic.MutConstruct (uri, typeno, consno, subst) in if leftno = 0 then constructor else Cic.Appl (constructor :: mk_rels consno leftno) in let eliminator = let p_ty = type_of_p sort dependent leftno indty ty in let final_ty = add_right_pi dependent leftno (conslen + 1) 1 rightno indty ty in Cic.Prod (Cic.Name "P", p_ty, (List.fold_right (fun (_, constructor) acc -> decr consno; let p = Cic.Rel !consno in Cic.Prod (Cic.Anonymous, (delta (uri, typeno, subst) dependent leftno !consno constructor p [mk_constructor !consno]), acc)) constructors final_ty)) in add_params leftno ty eliminator | _ -> assert false let rec branch (uri, typeno, subst) insource paramsno t fix head args = assert (subst = []); match t with | Cic.MutInd (uri', typeno', subst') when UriManager.eq uri uri' && typeno = typeno' && subst = subst' -> let head = if insource then fix else head in (match args with | [] -> head | _ -> Cic.Appl (head :: args)) | Cic.Appl (Cic.MutInd (uri', typeno', subst') :: tl) when UriManager.eq uri uri' && typeno = typeno' && subst = subst' -> let (lparams, rparams) = split tl paramsno in (match args with | [] when insource && rparams = [] -> fix | [] when insource -> Cic.Appl (fix :: rparams) | _ when insource -> Cic.Appl (fix :: rparams @ args) | _ -> Cic.Appl (head :: rparams @ args)) | Cic.Prod (binder, src, tgt) -> if recursive uri typeno subst src then let args = List.map (CicSubstitution.lift 1) args in let phi = let fix = CicSubstitution.lift 1 fix in branch (uri, typeno, subst) true paramsno src fix head (args @ [Cic.Rel 1]) in let tgt = CicSubstitution.lift 1 tgt in Cic.Lambda (fresh_binder true, src, branch (uri, typeno, subst) insource paramsno tgt (CicSubstitution.lift 1 fix) (CicSubstitution.lift 1 head) (args @ [Cic.Rel 1; phi])) else (* non recursive *) let args = List.map (CicSubstitution.lift 1) args in Cic.Lambda (fresh_binder true, src, branch (uri, typeno, subst) insource paramsno tgt (CicSubstitution.lift 1 fix) (CicSubstitution.lift 1 head) (args @ [Cic.Rel 1])) | _ -> assert false let branch (uri, typeno, subst) insource liftno paramsno t fix head args = let t = strip_left_params liftno paramsno t in branch (uri, typeno, subst) insource paramsno t fix head args let body_of ?(sort = Cic.Type (CicUniv.fresh ())) uri typeno = let (obj, univ) = (CicEnvironment.get_obj uri CicUniv.empty_ugraph) in let subst = [] in match obj with | Cic.InductiveDefinition (indTypes, params, leftno) -> let (name, inductive, ty, constructors) = try List.nth indTypes typeno with Failure _ -> assert false in let paramsno = count_pi ty in (* number of (left or right) parameters *) let rightno = paramsno - leftno in let dependent = (strip_pi ty <> Cic.Sort Cic.Prop) in let conslen = List.length constructors in let consno = ref (conslen + 1) in if (not dependent) && (sort <> Cic.Prop) && (conslen > 1) then raise (Failure (sprintf "can't eliminate from Prop to %s" (string_of_sort sort))); let indty = let indty = Cic.MutInd (uri, typeno, subst) in if paramsno = 0 then indty else Cic.Appl (indty :: mk_rels 0 paramsno) in let mk_constructor consno = let constructor = Cic.MutConstruct (uri, typeno, consno, subst) in if leftno = 0 then constructor else Cic.Appl (constructor :: mk_rels consno leftno) in let eliminator = let p_ty = type_of_p sort dependent leftno indty ty in let final_ty = add_right_pi dependent leftno (conslen + 1) 1 rightno indty ty in let fix = Cic.Rel (rightno + 2) in let (_, branches) = List.fold_right (fun (_, ty) (shift, branches) -> let head = Cic.Rel (rightno + shift + 2) in let b = branch (uri, typeno, subst) false (rightno + conslen + 3) leftno ty fix head [] in (shift + 1, b :: branches)) constructors (1, []) in let case = Cic.MutCase (uri, typeno, Cic.Rel (conslen + rightno + 3), Cic.Rel 1, branches) in let fix_body = add_right_lambda dependent leftno (conslen + 1) 1 rightno indty case ty in let fix = Cic.Fix (0, ["f", 0, final_ty, fix_body]) in Cic.Lambda (Cic.Name "P", p_ty, (List.fold_right (fun (_, constructor) acc -> decr consno; let p = Cic.Rel !consno in Cic.Lambda (fresh_binder true, (delta (uri, typeno, subst) dependent leftno !consno constructor p [mk_constructor !consno]), acc)) constructors fix)) in add_params leftno ty eliminator | _ -> assert false