(* Copyright (C) 2004, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://helm.cs.unibo.it/ *) let fresh_binder = let counter = ref ~-1 in function | true -> incr counter; Cic.Name ("elim" ^ string_of_int !counter) | _ -> Cic.Anonymous (** verifies if a given uri occurs in a term in target position *) let rec recursive uri = function | Cic.Prod (_, _, target) -> recursive uri target | Cic.MutInd (uri', _, _) -> UriManager.eq uri uri' | Cic.Appl args -> List.exists (recursive uri) args | _ -> false let unfold_appl = function | Cic.Appl ((Cic.Appl args) :: tl) -> Cic.Appl (args @ tl) | t -> t let rec split l n = match (l,n) with (l,0) -> ([], l) | (he::tl, n) -> let (l1,l2) = split tl (n-1) in (he::l1,l2) | (_,_) -> assert false (** build elimination principle part related to a single constructor * @param paramsno number of Prod to ignore in this constructor (i.e. number of * inductive parameters) * @param dependent true if we are in the dependent case (i.e. sort <> Prop) *) let rec delta (uri, typeno, subst) dependent paramsno consno t p args = assert (subst = []); match t with | Cic.MutInd (uri', typeno', subst') -> if dependent then (match args with | [] -> assert false | [arg] -> unfold_appl (Cic.Appl [p; arg]) | _ -> unfold_appl (Cic.Appl [p; unfold_appl (Cic.Appl args)])) else p | Cic.Appl (Cic.MutInd (uri', typeno', subst') :: tl) when UriManager.eq uri uri' && typeno = typeno' && subst = subst' -> let (lparams, rparams) = split tl paramsno in if dependent then (match args with | [] -> assert false | [arg] -> unfold_appl (Cic.Appl (p :: rparams @ [arg])) | _ -> unfold_appl (Cic.Appl (p :: rparams @ [unfold_appl (Cic.Appl args)]))) else (* non dependent *) (match rparams with | [] -> p | _ -> Cic.Appl (p :: rparams)) | Cic.Prod (binder, src, tgt) -> if recursive uri src then let args = List.map (CicSubstitution.lift 2) args in let phi = (delta (uri, typeno, subst) dependent paramsno consno src (CicSubstitution.lift 1 p) [Cic.Rel 1]) in Cic.Prod (fresh_binder dependent, src, Cic.Prod (Cic.Anonymous, phi, delta (uri, typeno, subst) dependent paramsno consno tgt (CicSubstitution.lift 2 p) (args @ [Cic.Rel 2]))) else (* non recursive *) let args = List.map (CicSubstitution.lift 1) args in Cic.Prod (fresh_binder dependent, src, delta (uri, typeno, subst) dependent paramsno consno tgt (CicSubstitution.lift 1 p) (args @ [Cic.Rel 1])) | _ -> assert false let rec strip_left_params consno leftno = function | t when leftno = 0 -> t (* no need to lift, the term is (hopefully) closed *) | Cic.Prod (_, _, tgt) (* when leftno > 0 *) -> (* after stripping the parameters we lift of consno. consno is 1 based so, * the first constructor will be lifted by 1 (for P), the second by 2 (1 * for P and 1 for the 1st constructor), and so on *) if leftno = 1 then CicSubstitution.lift consno tgt else strip_left_params consno (leftno - 1) tgt | _ -> assert false let delta (ury, typeno, subst) dependent paramsno consno t p args = let t = strip_left_params consno paramsno t in delta (ury, typeno, subst) dependent paramsno consno t p args let rec add_params indno ty eliminator = if indno = 0 then eliminator else match ty with | Cic.Prod (binder, src, tgt) -> Cic.Prod (binder, src, add_params (indno - 1) tgt eliminator) | _ -> assert false let rec mk_rels consno = function | 0 -> [] | n -> Cic.Rel (n+consno) :: mk_rels consno (n-1) let rec strip_pi = function | Cic.Prod (_, _, tgt) -> strip_pi tgt | t -> t let rec count_pi = function | Cic.Prod (_, _, tgt) -> count_pi tgt + 1 | t -> 0 let rec type_of_p dependent leftno indty = function | Cic.Prod (n, src, tgt) when leftno = 0 -> Cic.Prod (n, src, type_of_p dependent leftno indty tgt) | Cic.Prod (_, _, tgt) -> type_of_p dependent (leftno - 1) indty tgt | t -> if dependent then Cic.Prod (Cic.Anonymous, indty, Cic.Sort (Cic.Type (CicUniv.fresh ()))) else Cic.Sort (Cic.Type (CicUniv.fresh ())) let rec add_right_pi dependent strip liftno rightno indty = function | Cic.Prod (_, src, tgt) when strip = 0 -> Cic.Prod (fresh_binder true, CicSubstitution.lift liftno src, add_right_pi dependent strip liftno rightno indty tgt) | Cic.Prod (_, _, tgt) -> add_right_pi dependent (strip - 1) liftno rightno indty tgt | t -> if dependent then Cic.Prod (fresh_binder dependent, CicSubstitution.lift_from (rightno + 1) liftno indty, Cic.Appl (Cic.Rel (1 + liftno + rightno) :: mk_rels 0 (rightno + 1))) else Cic.Prod (Cic.Anonymous, CicSubstitution.lift_from (rightno + 1) liftno indty, if rightno = 0 then Cic.Rel (1 + liftno + rightno) else Cic.Appl (Cic.Rel (1 + liftno + rightno) :: mk_rels 1 rightno)) let elim_of uri typeno = let (obj, univ) = (CicEnvironment.get_obj uri CicUniv.empty_ugraph) in let subst = [] in match obj with | Cic.InductiveDefinition (indTypes, params, leftno) -> let (name, inductive, ty, constructors) = try List.nth indTypes typeno with Failure _ -> assert false in let paramsno = count_pi ty in (* number of (left or right) parameters *) let dependent = (strip_pi ty <> Cic.Sort Cic.Prop) in let conslen = List.length constructors in let consno = ref (conslen + 1) in let indty = let indty = Cic.MutInd (uri, typeno, subst) in if leftno = 0 then indty else Cic.Appl (indty :: mk_rels 0 paramsno) in let mk_constructor consno = let constructor = Cic.MutConstruct (uri, typeno, consno, subst) in if leftno = 0 then constructor else Cic.Appl (constructor :: mk_rels consno leftno) in let eliminator = let p_ty = type_of_p dependent leftno indty ty in let final_ty = add_right_pi dependent leftno (conslen + 1) (paramsno - leftno) indty ty in Cic.Prod (Cic.Name "P", p_ty, (List.fold_right (fun (_, constructor) acc -> decr consno; let p = Cic.Rel !consno in Cic.Prod (Cic.Anonymous, (delta (uri, typeno, subst) dependent leftno !consno constructor p [mk_constructor !consno]), acc)) constructors final_ty)) in add_params leftno ty eliminator | _ -> assert false