(* Copyright (C) 2004, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://helm.cs.unibo.it/ *) open Printf exception Elim_failure of string exception Can_t_eliminate let debug_print = fun _ -> () (*let debug_print s = prerr_endline (Lazy.force s) *) let counter = ref ~-1 ;; let fresh_binder () = Cic.Name "matita_dummy" (* incr counter; Cic.Name ("e" ^ string_of_int !counter) *) (** verifies if a given inductive type occurs in a term in target position *) let rec recursive uri typeno = function | Cic.Prod (_, _, target) -> recursive uri typeno target | Cic.MutInd (uri', typeno', []) | Cic.Appl (Cic.MutInd (uri', typeno', []) :: _) -> UriManager.eq uri uri' && typeno = typeno' | _ -> false (** given a list of constructor types, return true if at least one of them is * recursive, false otherwise *) let recursive_type uri typeno constructors = let rec aux = function | Cic.Prod (_, src, tgt) -> recursive uri typeno src || aux tgt | _ -> false in List.exists (fun (_, ty) -> aux ty) constructors let unfold_appl = function | Cic.Appl ((Cic.Appl args) :: tl) -> Cic.Appl (args @ tl) | t -> t let rec split l n = match (l,n) with (l,0) -> ([], l) | (he::tl, n) -> let (l1,l2) = split tl (n-1) in (he::l1,l2) | (_,_) -> assert false (** build elimination principle part related to a single constructor * @param paramsno number of Prod to ignore in this constructor (i.e. number of * inductive parameters) * @param dependent true if we are in the dependent case (i.e. sort <> Prop) *) let rec delta (uri, typeno) dependent paramsno consno t p args = match t with | Cic.MutInd (uri', typeno', []) when UriManager.eq uri uri' && typeno = typeno' -> if dependent then (match args with | [] -> assert false | [arg] -> unfold_appl (Cic.Appl [p; arg]) | _ -> unfold_appl (Cic.Appl [p; unfold_appl (Cic.Appl args)])) else p | Cic.Appl (Cic.MutInd (uri', typeno', []) :: tl) when UriManager.eq uri uri' && typeno = typeno' -> let (lparams, rparams) = split tl paramsno in if dependent then (match args with | [] -> assert false | [arg] -> unfold_appl (Cic.Appl (p :: rparams @ [arg])) | _ -> unfold_appl (Cic.Appl (p :: rparams @ [unfold_appl (Cic.Appl args)]))) else (* non dependent *) (match rparams with | [] -> p | _ -> Cic.Appl (p :: rparams)) | Cic.Prod (binder, src, tgt) -> if recursive uri typeno src then let args = List.map (CicSubstitution.lift 2) args in let phi = let src = CicSubstitution.lift 1 src in delta (uri, typeno) dependent paramsno consno src (CicSubstitution.lift 1 p) [Cic.Rel 1] in let tgt = CicSubstitution.lift 1 tgt in Cic.Prod (fresh_binder (), src, Cic.Prod (Cic.Anonymous, phi, delta (uri, typeno) dependent paramsno consno tgt (CicSubstitution.lift 2 p) (args @ [Cic.Rel 2]))) else (* non recursive *) let args = List.map (CicSubstitution.lift 1) args in Cic.Prod (fresh_binder (), src, delta (uri, typeno) dependent paramsno consno tgt (CicSubstitution.lift 1 p) (args @ [Cic.Rel 1])) | _ -> assert false let rec strip_left_params consno leftno = function | t when leftno = 0 -> t (* no need to lift, the term is (hopefully) closed *) | Cic.Prod (_, _, tgt) (* when leftno > 0 *) -> (* after stripping the parameters we lift of consno. consno is 1 based so, * the first constructor will be lifted by 1 (for P), the second by 2 (1 * for P and 1 for the 1st constructor), and so on *) if leftno = 1 then CicSubstitution.lift consno tgt else strip_left_params consno (leftno - 1) tgt | _ -> assert false let delta (ury, typeno) dependent paramsno consno t p args = let t = strip_left_params consno paramsno t in delta (ury, typeno) dependent paramsno consno t p args let rec add_params binder indno ty eliminator = if indno = 0 then eliminator else match ty with | Cic.Prod (name, src, tgt) -> let name = match name with Cic.Name _ -> name | Cic.Anonymous -> fresh_binder () in binder name src (add_params binder (indno - 1) tgt eliminator) | _ -> assert false let rec mk_rels consno = function | 0 -> [] | n -> Cic.Rel (n+consno) :: mk_rels consno (n-1) let rec strip_pi = function | Cic.Prod (_, _, tgt) -> strip_pi tgt | t -> t let rec count_pi = function | Cic.Prod (_, _, tgt) -> count_pi tgt + 1 | t -> 0 let rec type_of_p sort dependent leftno indty = function | Cic.Prod (n, src, tgt) when leftno = 0 -> let n = if dependent then match n with Cic.Name _ -> n | Cic.Anonymous -> fresh_binder () else n in Cic.Prod (n, src, type_of_p sort dependent leftno indty tgt) | Cic.Prod (_, _, tgt) -> type_of_p sort dependent (leftno - 1) indty tgt | t -> if dependent then Cic.Prod (Cic.Anonymous, indty, Cic.Sort sort) else Cic.Sort sort let rec add_right_pi dependent strip liftno liftfrom rightno indty = function | Cic.Prod (_, src, tgt) when strip = 0 -> Cic.Prod (fresh_binder (), CicSubstitution.lift_from liftfrom liftno src, add_right_pi dependent strip liftno (liftfrom + 1) rightno indty tgt) | Cic.Prod (_, _, tgt) -> add_right_pi dependent (strip - 1) liftno liftfrom rightno indty tgt | t -> if dependent then Cic.Prod (fresh_binder (), CicSubstitution.lift_from (rightno + 1) liftno indty, Cic.Appl (Cic.Rel (1 + liftno + rightno) :: mk_rels 0 (rightno + 1))) else Cic.Prod (Cic.Anonymous, CicSubstitution.lift_from (rightno + 1) liftno indty, if rightno = 0 then Cic.Rel (1 + liftno + rightno) else Cic.Appl (Cic.Rel (1 + liftno + rightno) :: mk_rels 1 rightno)) let rec add_right_lambda dependent strip liftno liftfrom rightno indty case = function | Cic.Prod (_, src, tgt) when strip = 0 -> Cic.Lambda (fresh_binder (), CicSubstitution.lift_from liftfrom liftno src, add_right_lambda dependent strip liftno (liftfrom + 1) rightno indty case tgt) | Cic.Prod (_, _, tgt) -> add_right_lambda true (strip - 1) liftno liftfrom rightno indty case tgt | t -> Cic.Lambda (fresh_binder (), CicSubstitution.lift_from (rightno + 1) liftno indty, case) let rec branch (uri, typeno) insource paramsno t fix head args = match t with | Cic.MutInd (uri', typeno', []) when UriManager.eq uri uri' && typeno = typeno' -> if insource then (match args with | [arg] -> Cic.Appl (fix :: args) | _ -> Cic.Appl (head :: [Cic.Appl args])) else (match args with | [] -> head | _ -> Cic.Appl (head :: args)) | Cic.Appl (Cic.MutInd (uri', typeno', []) :: tl) when UriManager.eq uri uri' && typeno = typeno' -> if insource then let (lparams, rparams) = split tl paramsno in match args with | [arg] -> Cic.Appl (fix :: rparams @ args) | _ -> Cic.Appl (fix :: rparams @ [Cic.Appl args]) else (match args with | [] -> head | _ -> Cic.Appl (head :: args)) | Cic.Prod (binder, src, tgt) -> if recursive uri typeno src then let args = List.map (CicSubstitution.lift 1) args in let phi = let fix = CicSubstitution.lift 1 fix in let src = CicSubstitution.lift 1 src in branch (uri, typeno) true paramsno src fix head [Cic.Rel 1] in Cic.Lambda (fresh_binder (), src, branch (uri, typeno) insource paramsno tgt (CicSubstitution.lift 1 fix) (CicSubstitution.lift 1 head) (args @ [Cic.Rel 1; phi])) else (* non recursive *) let args = List.map (CicSubstitution.lift 1) args in Cic.Lambda (fresh_binder (), src, branch (uri, typeno) insource paramsno tgt (CicSubstitution.lift 1 fix) (CicSubstitution.lift 1 head) (args @ [Cic.Rel 1])) | _ -> assert false let branch (uri, typeno) insource liftno paramsno t fix head args = let t = strip_left_params liftno paramsno t in branch (uri, typeno) insource paramsno t fix head args let elim_of ?(sort = Cic.Type (CicUniv.fresh ())) uri typeno = counter := ~-1; let (obj, univ) = (CicEnvironment.get_obj CicUniv.empty_ugraph uri) in match obj with | Cic.InductiveDefinition (indTypes, params, leftno, _) -> let (name, inductive, ty, constructors) = try List.nth indTypes typeno with Failure _ -> assert false in let paramsno = count_pi ty in (* number of (left or right) parameters *) let rightno = paramsno - leftno in let dependent = (strip_pi ty <> Cic.Sort Cic.Prop) in let conslen = List.length constructors in let consno = ref (conslen + 1) in if (not dependent) && (sort <> Cic.Prop) && (conslen > 1) then raise Can_t_eliminate; let indty = let indty = Cic.MutInd (uri, typeno, []) in if paramsno = 0 then indty else Cic.Appl (indty :: mk_rels 0 paramsno) in let mk_constructor consno = let constructor = Cic.MutConstruct (uri, typeno, consno, []) in if leftno = 0 then constructor else Cic.Appl (constructor :: mk_rels consno leftno) in let p_ty = type_of_p sort dependent leftno indty ty in let final_ty = add_right_pi dependent leftno (conslen + 1) 1 rightno indty ty in let eliminator_type = let cic = Cic.Prod (Cic.Name "P", p_ty, (List.fold_right (fun (_, constructor) acc -> decr consno; let p = Cic.Rel !consno in Cic.Prod (Cic.Anonymous, (delta (uri, typeno) dependent leftno !consno constructor p [mk_constructor !consno]), acc)) constructors final_ty)) in add_params (fun b s t -> Cic.Prod (b, s, t)) leftno ty cic in let consno = ref (conslen + 1) in let eliminator_body = let fix = Cic.Rel (rightno + 2) in let is_recursive = recursive_type uri typeno constructors in let recshift = if is_recursive then 1 else 0 in let (_, branches) = List.fold_right (fun (_, ty) (shift, branches) -> let head = Cic.Rel (rightno + shift + 1 + recshift) in let b = branch (uri, typeno) false (rightno + conslen + 2 + recshift) leftno ty fix head [] in (shift + 1, b :: branches)) constructors (1, []) in let shiftno = conslen + rightno + 2 + recshift in let outtype = if dependent then Cic.Rel shiftno else let head = if rightno = 0 then CicSubstitution.lift 1 (Cic.Rel shiftno) else Cic.Appl ((CicSubstitution.lift (rightno + 1) (Cic.Rel shiftno)) :: mk_rels 1 rightno) in add_right_lambda true leftno shiftno 1 rightno indty head ty in let mutcase = Cic.MutCase (uri, typeno, outtype, Cic.Rel 1, branches) in let body = if is_recursive then let fixfun = add_right_lambda dependent leftno (conslen + 2) 1 rightno indty mutcase ty in (* rightno is the decreasing argument, i.e. the argument of * inductive type *) Cic.Fix (0, ["f", rightno, final_ty, fixfun]) else add_right_lambda dependent leftno (conslen + 1) 1 rightno indty mutcase ty in let cic = Cic.Lambda (Cic.Name "P", p_ty, (List.fold_right (fun (_, constructor) acc -> decr consno; let p = Cic.Rel !consno in Cic.Lambda (fresh_binder (), (delta (uri, typeno) dependent leftno !consno constructor p [mk_constructor !consno]), acc)) constructors body)) in add_params (fun b s t -> Cic.Lambda (b, s, t)) leftno ty cic in (* debug_print (lazy (CicPp.ppterm eliminator_type)); debug_print (lazy (CicPp.ppterm eliminator_body)); *) let eliminator_type = FreshNamesGenerator.mk_fresh_names [] [] [] eliminator_type in let eliminator_body = FreshNamesGenerator.mk_fresh_names [] [] [] eliminator_body in (* debug_print (lazy (CicPp.ppterm eliminator_type)); debug_print (lazy (CicPp.ppterm eliminator_body)); *) let (computed_type, ugraph) = try CicTypeChecker.type_of_aux' [] [] eliminator_body CicUniv.empty_ugraph with CicTypeChecker.TypeCheckerFailure msg -> raise (Elim_failure (sprintf "type checker failure while type checking:\n%s\nerror:\n%s" (CicPp.ppterm eliminator_body) msg)) in if not (fst (CicReduction.are_convertible [] eliminator_type computed_type ugraph)) then raise (Failure (sprintf "internal error: type mismatch on eliminator type\n%s\n%s" (CicPp.ppterm eliminator_type) (CicPp.ppterm computed_type))); let suffix = match sort with | Cic.Prop -> "_ind" | Cic.Set -> "_rec" | Cic.Type _ -> "_rect" | _ -> assert false in let name = UriManager.name_of_uri uri ^ suffix in let buri = UriManager.buri_of_uri uri in let uri = UriManager.uri_of_string (buri ^ "/" ^ name ^ ".con") in let obj_attrs = [`Class (`Elim sort); `Generated] in uri, Cic.Constant (name, Some eliminator_body, eliminator_type, [], obj_attrs) | _ -> failwith (sprintf "not an inductive definition (%s)" (UriManager.string_of_uri uri))