(* Copyright (C) 2000, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://cs.unibo.it/helm/. *) exception CicReductionInternalError;; exception WrongUriToInductiveDefinition;; let fdebug = ref 1;; let debug t env s = let rec debug_aux t i = let module C = Cic in let module U = UriManager in CicPp.ppobj (C.Variable ("DEBUG", None, t)) ^ "\n" ^ i in if !fdebug = 0 then begin print_endline (s ^ "\n" ^ List.fold_right debug_aux (t::env) "") ; flush stdout end ;; exception Impossible of int;; exception ReferenceToDefinition;; exception ReferenceToAxiom;; exception ReferenceToVariable;; exception ReferenceToCurrentProof;; exception ReferenceToInductiveDefinition;; (* takes a well-typed term *) let whd = let rec whdaux l = let module C = Cic in let module S = CicSubstitution in function C.Rel _ as t -> if l = [] then t else C.Appl (t::l) | C.Var uri as t -> (match CicEnvironment.get_cooked_obj uri 0 with C.Definition _ -> raise ReferenceToDefinition | C.Axiom _ -> raise ReferenceToAxiom | C.CurrentProof _ -> raise ReferenceToCurrentProof | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition | C.Variable (_,None,_) -> if l = [] then t else C.Appl (t::l) | C.Variable (_,Some body,_) -> whdaux l body ) | C.Meta _ as t -> if l = [] then t else C.Appl (t::l) | C.Sort _ as t -> t (* l should be empty *) | C.Implicit as t -> t | C.Cast (te,ty) -> whdaux l te (*CSC E' GIUSTO BUTTARE IL CAST? *) | C.Prod _ as t -> t (* l should be empty *) | C.Lambda (name,s,t) as t' -> (match l with [] -> t' | he::tl -> whdaux tl (S.subst he t) (* when name is Anonimous the substitution should be superfluous *) ) | C.LetIn (n,s,t) -> whdaux l (S.subst (whdaux [] s) t) | C.Appl (he::tl) -> whdaux (tl@l) he | C.Appl [] -> raise (Impossible 1) | C.Const (uri,cookingsno) as t -> (match CicEnvironment.get_cooked_obj uri cookingsno with C.Definition (_,body,_,_) -> whdaux l body | C.Axiom _ -> if l = [] then t else C.Appl (t::l) | C.Variable _ -> raise ReferenceToVariable | C.CurrentProof (_,_,body,_) -> whdaux l body | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition ) | C.Abst _ as t -> t (*CSC l should be empty ????? *) | C.MutInd (uri,_,_) as t -> if l = [] then t else C.Appl (t::l) | C.MutConstruct (uri,_,_,_) as t -> if l = [] then t else C.Appl (t::l) | C.MutCase (mutind,cookingsno,i,_,term,pl) as t -> let decofix = function C.CoFix (i,fl) as t -> let (_,_,body) = List.nth fl i in let body' = let counter = ref (List.length fl) in List.fold_right (fun _ -> decr counter ; S.subst (C.CoFix (!counter,fl))) fl body in whdaux [] body' | C.Appl (C.CoFix (i,fl) :: tl) -> let (_,_,body) = List.nth fl i in let body' = let counter = ref (List.length fl) in List.fold_right (fun _ -> decr counter ; S.subst (C.CoFix (!counter,fl))) fl body in whdaux tl body' | t -> t in (match decofix (whdaux [] term) with C.MutConstruct (_,_,_,j) -> whdaux l (List.nth pl (j-1)) | C.Appl (C.MutConstruct (_,_,_,j) :: tl) -> let (arity, r, num_ingredients) = match CicEnvironment.get_obj mutind with C.InductiveDefinition (tl,ingredients,r) -> let (_,_,arity,_) = List.nth tl i and num_ingredients = List.fold_right (fun (k,l) i -> if k < cookingsno then i + List.length l else i ) ingredients 0 in (arity,r,num_ingredients) | _ -> raise WrongUriToInductiveDefinition in let ts = let num_to_eat = r + num_ingredients in let rec eat_first = function (0,l) -> l | (n,he::tl) when n > 0 -> eat_first (n - 1, tl) | _ -> raise (Impossible 5) in eat_first (num_to_eat,tl) in whdaux (ts@l) (List.nth pl (j-1)) | C.Abst _| C.Cast _ | C.Implicit -> raise (Impossible 2) (* we don't trust our whd ;-) *) | _ -> t ) | C.Fix (i,fl) as t -> let (_,recindex,_,body) = List.nth fl i in let recparam = try Some (List.nth l recindex) with _ -> None in (match recparam with Some recparam -> (match whdaux [] recparam with C.MutConstruct _ | C.Appl ((C.MutConstruct _)::_) -> let body' = let counter = ref (List.length fl) in List.fold_right (fun _ -> decr counter ; S.subst (C.Fix (!counter,fl))) fl body in (* Possible optimization: substituting whd recparam in l *) whdaux l body' | _ -> if l = [] then t else C.Appl (t::l) ) | None -> if l = [] then t else C.Appl (t::l) ) | C.CoFix (i,fl) as t -> (*CSC vecchio codice let (_,_,body) = List.nth fl i in let body' = let counter = ref (List.length fl) in List.fold_right (fun _ -> decr counter ; S.subst (C.CoFix (!counter,fl))) fl body in whdaux l body' *) if l = [] then t else C.Appl (t::l) in whdaux [] ;; (* t1, t2 must be well-typed *) let are_convertible t1 t2 = let module U = UriManager in let rec aux t1 t2 = debug t1 [t2] "PREWHD"; (* this trivial euristic cuts down the total time of about five times ;-) *) (* this because most of the time t1 and t2 are "sintactically" the same *) if t1 = t2 then true else begin let module C = Cic in let t1' = whd t1 and t2' = whd t2 in debug t1' [t2'] "POSTWHD"; (*if !fdebug = 0 then ignore(Unix.system "read" );*) match (t1',t2') with (C.Rel n1, C.Rel n2) -> n1 = n2 | (C.Var uri1, C.Var uri2) -> U.eq uri1 uri2 | (C.Meta n1, C.Meta n2) -> n1 = n2 | (C.Sort s1, C.Sort s2) -> true (*CSC da finire con gli universi *) | (C.Prod (_,s1,t1), C.Prod(_,s2,t2)) -> aux s1 s2 && aux t1 t2 | (C.Lambda (_,s1,t1), C.Lambda(_,s2,t2)) -> aux s1 s2 && aux t1 t2 | (C.Appl l1, C.Appl l2) -> (try List.fold_right2 (fun x y b -> aux x y && b) l1 l2 true with Invalid_argument _ -> false ) | (C.Const (uri1,_), C.Const (uri2,_)) -> (*CSC: questo commento e' chiaro o delirante? Io lo sto scrivendo *) (*CSC: mentre sono delirante, quindi ... *) (* WARNING: it is really important that the two cookingsno are not *) (* checked for equality. This allows not to cook an object with no *) (* ingredients only to update the cookingsno. E.g: if a term t has *) (* a reference to a term t1 which does not depend on any variable *) (* and t1 depends on a term t2 (that can't depend on any variable *) (* because of t1), then t1 cooked at every level could be the same *) (* as t1 cooked at level 0. Doing so, t2 will be extended in t *) (* with cookingsno 0 and not 2. But this will not cause any trouble*) (* if here we don't check that the two cookingsno are equal. *) U.eq uri1 uri2 | (C.MutInd (uri1,k1,i1), C.MutInd (uri2,k2,i2)) -> (* WARNIG: see the previous warning *) U.eq uri1 uri2 && i1 = i2 | (C.MutConstruct (uri1,_,i1,j1), C.MutConstruct (uri2,_,i2,j2)) -> (* WARNIG: see the previous warning *) U.eq uri1 uri2 && i1 = i2 && j1 = j2 | (C.MutCase (uri1,_,i1,outtype1,term1,pl1), C.MutCase (uri2,_,i2,outtype2,term2,pl2)) -> (* WARNIG: see the previous warning *) (* aux outtype1 outtype2 should be true if aux pl1 pl2 *) U.eq uri1 uri2 && i1 = i2 && aux outtype1 outtype2 && aux term1 term2 && List.fold_right2 (fun x y b -> b && aux x y) pl1 pl2 true | (C.Fix (i1,fl1), C.Fix (i2,fl2)) -> i1 = i2 && List.fold_right2 (fun (_,recindex1,ty1,bo1) (_,recindex2,ty2,bo2) b -> b && recindex1 = recindex2 && aux ty1 ty2 && aux bo1 bo2) fl1 fl2 true | (C.CoFix (i1,fl1), C.CoFix (i2,fl2)) -> i1 = i2 && List.fold_right2 (fun (_,ty1,bo1) (_,ty2,bo2) b -> b && aux ty1 ty2 && aux bo1 bo2) fl1 fl2 true | (C.Abst _, _) | (_, C.Abst _) | (C.Cast _, _) | (_, C.Cast _) | (C.Implicit, _) | (_, C.Implicit) -> raise (Impossible 3) (* we don't trust our whd ;-) *) | (_,_) -> debug t1' [t2'] "NOT-CONVERTIBLE" ; false end in aux t1 t2 ;;