(* Copyright (C) 2000, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://cs.unibo.it/helm/. *) (* TODO unify exceptions *) exception CicReductionInternalError;; exception WrongUriToInductiveDefinition;; exception Impossible of int;; exception ReferenceToConstant;; exception ReferenceToVariable;; exception ReferenceToCurrentProof;; exception ReferenceToInductiveDefinition;; let debug_print = fun _ -> () let fdebug = ref 1;; let debug t env s = let rec debug_aux t i = let module C = Cic in let module U = UriManager in CicPp.ppobj (C.Variable ("DEBUG", None, t, [], [])) ^ "\n" ^ i in if !fdebug = 0 then debug_print (s ^ "\n" ^ List.fold_right debug_aux (t::env) "") ;; module type Strategy = sig type stack_term type env_term type ens_term val to_stack : Cic.term -> stack_term val to_stack_list : Cic.term list -> stack_term list val to_env : Cic.term -> env_term val to_ens : Cic.term -> ens_term val from_stack : unwind: (int -> env_term list -> ens_term Cic.explicit_named_substitution -> Cic.term -> Cic.term) -> stack_term -> Cic.term val from_stack_list : unwind: (int -> env_term list -> ens_term Cic.explicit_named_substitution -> Cic.term -> Cic.term) -> stack_term list -> Cic.term list val from_env : env_term -> Cic.term val from_ens : ens_term -> Cic.term val stack_to_env : reduce: (int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list -> Cic.term) -> unwind: (int -> env_term list -> ens_term Cic.explicit_named_substitution -> Cic.term -> Cic.term) -> stack_term -> env_term val compute_to_env : reduce: (int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list -> Cic.term) -> unwind: (int -> env_term list -> ens_term Cic.explicit_named_substitution -> Cic.term -> Cic.term) -> int -> env_term list -> ens_term Cic.explicit_named_substitution -> Cic.term -> env_term val compute_to_stack : reduce: (int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list -> Cic.term) -> unwind: (int -> env_term list -> ens_term Cic.explicit_named_substitution -> Cic.term -> Cic.term) -> int -> env_term list -> ens_term Cic.explicit_named_substitution -> Cic.term -> stack_term end ;; module CallByNameStrategy = struct type stack_term = Cic.term type env_term = Cic.term type ens_term = Cic.term let to_stack v = v let to_stack_list l = l let to_env v = v let to_ens v = v let from_stack ~unwind v = v let from_stack_list ~unwind l = l let from_env v = v let from_ens v = v let stack_to_env ~reduce ~unwind v = v let compute_to_stack ~reduce ~unwind k e ens t = unwind k e ens t let compute_to_env ~reduce ~unwind k e ens t = unwind k e ens t end ;; module CallByValueStrategy = struct type stack_term = Cic.term type env_term = Cic.term type ens_term = Cic.term let to_stack v = v let to_stack_list l = l let to_env v = v let to_ens v = v let from_stack ~unwind v = v let from_stack_list ~unwind l = l let from_env v = v let from_ens v = v let stack_to_env ~reduce ~unwind v = v let compute_to_stack ~reduce ~unwind k e ens t = reduce (k,e,ens,t,[]) let compute_to_env ~reduce ~unwind k e ens t = reduce (k,e,ens,t,[]) end ;; module CallByValueStrategyByNameOnConstants = struct type stack_term = Cic.term type env_term = Cic.term type ens_term = Cic.term let to_stack v = v let to_stack_list l = l let to_env v = v let to_ens v = v let from_stack ~unwind v = v let from_stack_list ~unwind l = l let from_env v = v let from_ens v = v let stack_to_env ~reduce ~unwind v = v let compute_to_stack ~reduce ~unwind k e ens = function Cic.Const _ as t -> unwind k e ens t | t -> reduce (k,e,ens,t,[]) let compute_to_env ~reduce ~unwind k e ens = function Cic.Const _ as t -> unwind k e ens t | t -> reduce (k,e,ens,t,[]) end ;; module LazyCallByValueStrategy = struct type stack_term = Cic.term lazy_t type env_term = Cic.term lazy_t type ens_term = Cic.term lazy_t let to_stack v = lazy v let to_stack_list l = List.map to_stack l let to_env v = lazy v let to_ens v = lazy v let from_stack ~unwind v = Lazy.force v let from_stack_list ~unwind l = List.map (from_stack ~unwind) l let from_env v = Lazy.force v let from_ens v = Lazy.force v let stack_to_env ~reduce ~unwind v = v let compute_to_stack ~reduce ~unwind k e ens t = lazy (reduce (k,e,ens,t,[])) let compute_to_env ~reduce ~unwind k e ens t = lazy (reduce (k,e,ens,t,[])) end ;; module LazyCallByValueStrategyByNameOnConstants = struct type stack_term = Cic.term lazy_t type env_term = Cic.term lazy_t type ens_term = Cic.term lazy_t let to_stack v = lazy v let to_stack_list l = List.map to_stack l let to_env v = lazy v let to_ens v = lazy v let from_stack ~unwind v = Lazy.force v let from_stack_list ~unwind l = List.map (from_stack ~unwind) l let from_env v = Lazy.force v let from_ens v = Lazy.force v let stack_to_env ~reduce ~unwind v = v let compute_to_stack ~reduce ~unwind k e ens t = lazy ( match t with Cic.Const _ as t -> unwind k e ens t | t -> reduce (k,e,ens,t,[])) let compute_to_env ~reduce ~unwind k e ens t = lazy ( match t with Cic.Const _ as t -> unwind k e ens t | t -> reduce (k,e,ens,t,[])) end ;; module LazyCallByNameStrategy = struct type stack_term = Cic.term lazy_t type env_term = Cic.term lazy_t type ens_term = Cic.term lazy_t let to_stack v = lazy v let to_stack_list l = List.map to_stack l let to_env v = lazy v let to_ens v = lazy v let from_stack ~unwind v = Lazy.force v let from_stack_list ~unwind l = List.map (from_stack ~unwind) l let from_env v = Lazy.force v let from_ens v = Lazy.force v let stack_to_env ~reduce ~unwind v = v let compute_to_stack ~reduce ~unwind k e ens t = lazy (unwind k e ens t) let compute_to_env ~reduce ~unwind k e ens t = lazy (unwind k e ens t) end ;; module LazyCallByValueByNameOnConstantsWhenFromStack_ByNameStrategyWhenFromEnvOrEns = struct type stack_term = reduce:bool -> Cic.term type env_term = reduce:bool -> Cic.term type ens_term = reduce:bool -> Cic.term let to_stack v = let value = lazy v in fun ~reduce -> Lazy.force value let to_stack_list l = List.map to_stack l let to_env v = let value = lazy v in fun ~reduce -> Lazy.force value let to_ens v = let value = lazy v in fun ~reduce -> Lazy.force value let from_stack ~unwind v = (v ~reduce:false) let from_stack_list ~unwind l = List.map (from_stack ~unwind) l let from_env v = (v ~reduce:true) let from_ens v = (v ~reduce:true) let stack_to_env ~reduce ~unwind v = v let compute_to_stack ~reduce ~unwind k e ens t = let svalue = lazy ( match t with Cic.Const _ as t -> unwind k e ens t | t -> reduce (k,e,ens,t,[]) ) in let lvalue = lazy (unwind k e ens t) in fun ~reduce -> if reduce then Lazy.force svalue else Lazy.force lvalue let compute_to_env ~reduce ~unwind k e ens t = let svalue = lazy ( match t with Cic.Const _ as t -> unwind k e ens t | t -> reduce (k,e,ens,t,[]) ) in let lvalue = lazy (unwind k e ens t) in fun ~reduce -> if reduce then Lazy.force svalue else Lazy.force lvalue end ;; module ClosuresOnStackByValueFromEnvOrEnsStrategy = struct type stack_term = int * Cic.term list * Cic.term Cic.explicit_named_substitution * Cic.term type env_term = Cic.term type ens_term = Cic.term let to_stack v = (0,[],[],v) let to_stack_list l = List.map to_stack l let to_env v = v let to_ens v = v let from_stack ~unwind (k,e,ens,t) = unwind k e ens t let from_stack_list ~unwind l = List.map (from_stack ~unwind) l let from_env v = v let from_ens v = v let stack_to_env ~reduce ~unwind (k,e,ens,t) = reduce (k,e,ens,t,[]) let compute_to_env ~reduce ~unwind k e ens t = unwind k e ens t let compute_to_stack ~reduce ~unwind k e ens t = (k,e,ens,t) end ;; module ClosuresOnStackByValueFromEnvOrEnsByNameOnConstantsStrategy = struct type stack_term = int * Cic.term list * Cic.term Cic.explicit_named_substitution * Cic.term type env_term = Cic.term type ens_term = Cic.term let to_stack v = (0,[],[],v) let to_stack_list l = List.map to_stack l let to_env v = v let to_ens v = v let from_stack ~unwind (k,e,ens,t) = unwind k e ens t let from_stack_list ~unwind l = List.map (from_stack ~unwind) l let from_env v = v let from_ens v = v let stack_to_env ~reduce ~unwind (k,e,ens,t) = match t with Cic.Const _ as t -> unwind k e ens t | t -> reduce (k,e,ens,t,[]) let compute_to_env ~reduce ~unwind k e ens t = unwind k e ens t let compute_to_stack ~reduce ~unwind k e ens t = (k,e,ens,t) end ;; module Reduction(RS : Strategy) = struct type env = RS.env_term list type ens = RS.ens_term Cic.explicit_named_substitution type stack = RS.stack_term list type config = int * env * ens * Cic.term * stack (* k is the length of the environment e *) (* m is the current depth inside the term *) let unwind' m k e ens t = let module C = Cic in let module S = CicSubstitution in if k = 0 && ens = [] then t else let rec unwind_aux m = function C.Rel n as t -> if n <= m then t else let d = try Some (RS.from_env (List.nth e (n-m-1))) with _ -> None in (match d with Some t' -> if m = 0 then t' else S.lift m t' | None -> C.Rel (n-k) ) | C.Var (uri,exp_named_subst) -> (* debug_print ("%%%%%UWVAR " ^ String.concat " ; " (List.map (function (uri,t) -> UriManager.string_of_uri uri ^ " := " ^ CicPp.ppterm t) ens)) ; *) if List.exists (function (uri',_) -> UriManager.eq uri' uri) ens then CicSubstitution.lift m (RS.from_ens (List.assq uri ens)) else let params = let o,_ = CicEnvironment.get_cooked_obj CicUniv.empty_ugraph uri in (match o with C.Constant _ -> raise ReferenceToConstant | C.Variable (_,_,_,params,_) -> params | C.CurrentProof _ -> raise ReferenceToCurrentProof | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition ) in let exp_named_subst' = substaux_in_exp_named_subst params exp_named_subst m in C.Var (uri,exp_named_subst') | C.Meta (i,l) -> let l' = List.map (function None -> None | Some t -> Some (unwind_aux m t) ) l in C.Meta (i, l') | C.Sort _ as t -> t | C.Implicit _ as t -> t | C.Cast (te,ty) -> C.Cast (unwind_aux m te, unwind_aux m ty) (*CSC ???*) | C.Prod (n,s,t) -> C.Prod (n, unwind_aux m s, unwind_aux (m + 1) t) | C.Lambda (n,s,t) -> C.Lambda (n, unwind_aux m s, unwind_aux (m + 1) t) | C.LetIn (n,s,t) -> C.LetIn (n, unwind_aux m s, unwind_aux (m + 1) t) | C.Appl l -> C.Appl (List.map (unwind_aux m) l) | C.Const (uri,exp_named_subst) -> let params = let o,_ = CicEnvironment.get_cooked_obj CicUniv.empty_ugraph uri in (match o with C.Constant (_,_,_,params,_) -> params | C.Variable _ -> raise ReferenceToVariable | C.CurrentProof (_,_,_,_,params,_) -> params | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition ) in let exp_named_subst' = substaux_in_exp_named_subst params exp_named_subst m in C.Const (uri,exp_named_subst') | C.MutInd (uri,i,exp_named_subst) -> let params = let o,_ = CicEnvironment.get_cooked_obj CicUniv.empty_ugraph uri in (match o with C.Constant _ -> raise ReferenceToConstant | C.Variable _ -> raise ReferenceToVariable | C.CurrentProof _ -> raise ReferenceToCurrentProof | C.InductiveDefinition (_,params,_,_) -> params ) in let exp_named_subst' = substaux_in_exp_named_subst params exp_named_subst m in C.MutInd (uri,i,exp_named_subst') | C.MutConstruct (uri,i,j,exp_named_subst) -> let params = let o,_ = CicEnvironment.get_cooked_obj CicUniv.empty_ugraph uri in (match o with C.Constant _ -> raise ReferenceToConstant | C.Variable _ -> raise ReferenceToVariable | C.CurrentProof _ -> raise ReferenceToCurrentProof | C.InductiveDefinition (_,params,_,_) -> params ) in let exp_named_subst' = substaux_in_exp_named_subst params exp_named_subst m in C.MutConstruct (uri,i,j,exp_named_subst') | C.MutCase (sp,i,outt,t,pl) -> C.MutCase (sp,i,unwind_aux m outt, unwind_aux m t, List.map (unwind_aux m) pl) | C.Fix (i,fl) -> let len = List.length fl in let substitutedfl = List.map (fun (name,i,ty,bo) -> (name, i, unwind_aux m ty, unwind_aux (m+len) bo)) fl in C.Fix (i, substitutedfl) | C.CoFix (i,fl) -> let len = List.length fl in let substitutedfl = List.map (fun (name,ty,bo) -> (name, unwind_aux m ty, unwind_aux (m+len) bo)) fl in C.CoFix (i, substitutedfl) and substaux_in_exp_named_subst params exp_named_subst' m = (*CSC: Idea di Andrea di ordinare compatibilmente con l'ordine dei params let ens' = List.map (function (uri,t) -> uri, unwind_aux m t) exp_named_subst' @ (*CSC: qui liftiamo tutti gli ens anche se magari me ne servono la meta'!!! *) List.map (function (uri,t) -> uri, CicSubstitution.lift m t) ens in let rec filter_and_lift = function [] -> [] | uri::tl -> let r = filter_and_lift tl in (try (uri,(List.assq uri ens'))::r with Not_found -> r ) in filter_and_lift params *) (*CSC: invece di concatenare sarebbe meglio rispettare l'ordine dei params *) (*CSC: e' vero???? una veloce prova non sembra confermare la teoria *) (*CSC: codice copiato e modificato dalla cicSubstitution.subst_vars *) (*CSC: codice altamente inefficiente *) let rec filter_and_lift already_instantiated = function [] -> [] | (uri,t)::tl when List.for_all (function (uri',_)-> not (UriManager.eq uri uri')) exp_named_subst' && not (List.mem uri already_instantiated) && List.mem uri params -> (uri,CicSubstitution.lift m (RS.from_ens t)) :: (filter_and_lift (uri::already_instantiated) tl) | _::tl -> filter_and_lift already_instantiated tl (* | (uri,_)::tl -> debug_print ("---- SKIPPO " ^ UriManager.string_of_uri uri) ; if List.for_all (function (uri',_) -> not (UriManager.eq uri uri')) exp_named_subst' then debug_print "---- OK1" ; debug_print ("++++ uri " ^ UriManager.string_of_uri uri ^ " not in " ^ String.concat " ; " (List.map UriManager.string_of_uri params)) ; if List.mem uri params then debug_print "---- OK2" ; filter_and_lift tl *) in List.map (function (uri,t) -> uri, unwind_aux m t) exp_named_subst' @ (filter_and_lift [] (List.rev ens)) in unwind_aux m t ;; let unwind = unwind' 0 ;; let reduce ~delta ?(subst = []) context : config -> Cic.term = let module C = Cic in let module S = CicSubstitution in let rec reduce = function (k, e, _, (C.Rel n as t), s) -> let d = try Some (RS.from_env (List.nth e (n-1))) with _ -> try begin match List.nth context (n - 1 - k) with None -> assert false | Some (_,C.Decl _) -> None | Some (_,C.Def (x,_)) -> Some (S.lift (n - k) x) end with _ -> None in (match d with Some t' -> reduce (0,[],[],t',s) | None -> if s = [] then C.Rel (n-k) else C.Appl (C.Rel (n-k)::(RS.from_stack_list ~unwind s)) ) | (k, e, ens, (C.Var (uri,exp_named_subst) as t), s) -> if List.exists (function (uri',_) -> UriManager.eq uri' uri) ens then reduce (0, [], [], RS.from_ens (List.assq uri ens), s) else ( let o,_ = CicEnvironment.get_cooked_obj CicUniv.empty_ugraph uri in match o with C.Constant _ -> raise ReferenceToConstant | C.CurrentProof _ -> raise ReferenceToCurrentProof | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition | C.Variable (_,None,_,_,_) -> let t' = unwind k e ens t in if s = [] then t' else C.Appl (t'::(RS.from_stack_list ~unwind s)) | C.Variable (_,Some body,_,_,_) -> let ens' = push_exp_named_subst k e ens exp_named_subst in reduce (0, [], ens', body, s) ) | (k, e, ens, (C.Meta (n,l) as t), s) -> (try let (_, term,_) = CicUtil.lookup_subst n subst in reduce (k, e, ens,CicSubstitution.subst_meta l term,s) with CicUtil.Subst_not_found _ -> let t' = unwind k e ens t in if s = [] then t' else C.Appl (t'::(RS.from_stack_list ~unwind s))) | (k, e, _, (C.Sort _ as t), s) -> t (* s should be empty *) | (k, e, _, (C.Implicit _ as t), s) -> t (* s should be empty *) | (k, e, ens, (C.Cast (te,ty) as t), s) -> reduce (k, e, ens, te, s) (* s should be empty *) | (k, e, ens, (C.Prod _ as t), s) -> unwind k e ens t (* s should be empty *) | (k, e, ens, (C.Lambda (_,_,t) as t'), []) -> unwind k e ens t' | (k, e, ens, C.Lambda (_,_,t), p::s) -> reduce (k+1, (RS.stack_to_env ~reduce ~unwind p)::e, ens, t,s) | (k, e, ens, (C.LetIn (_,m,t) as t'), s) -> let m' = RS.compute_to_env ~reduce ~unwind k e ens m in reduce (k+1, m'::e, ens, t, s) | (_, _, _, C.Appl [], _) -> assert false | (k, e, ens, C.Appl (he::tl), s) -> let tl' = List.map (function t -> RS.compute_to_stack ~reduce ~unwind k e ens t) tl in reduce (k, e, ens, he, (List.append tl') s) (* CSC: Old Dead Code | (k, e, ens, C.Appl ((C.Lambda _ as he)::tl), s) | (k, e, ens, C.Appl ((C.Const _ as he)::tl), s) | (k, e, ens, C.Appl ((C.MutCase _ as he)::tl), s) | (k, e, ens, C.Appl ((C.Fix _ as he)::tl), s) -> (* strict evaluation, but constants are NOT unfolded *) let red = function C.Const _ as t -> unwind k e ens t | t -> reduce (k,e,ens,t,[]) in let tl' = List.map red tl in reduce (k, e, ens, he , List.append tl' s) | (k, e, ens, C.Appl l, s) -> C.Appl (List.append (List.map (unwind k e ens) l) s) *) | (k, e, ens, (C.Const (uri,exp_named_subst) as t), s) when delta=false-> let t' = unwind k e ens t in if s = [] then t' else C.Appl (t'::(RS.from_stack_list ~unwind s)) | (k, e, ens, (C.Const (uri,exp_named_subst) as t), s) -> (let o,_ = CicEnvironment.get_cooked_obj CicUniv.empty_ugraph uri in match o with C.Constant (_,Some body,_,_,_) -> let ens' = push_exp_named_subst k e ens exp_named_subst in (* constants are closed *) reduce (0, [], ens', body, s) | C.Constant (_,None,_,_,_) -> let t' = unwind k e ens t in if s = [] then t' else C.Appl (t'::(RS.from_stack_list ~unwind s)) | C.Variable _ -> raise ReferenceToVariable | C.CurrentProof (_,_,body,_,_,_) -> let ens' = push_exp_named_subst k e ens exp_named_subst in (* constants are closed *) reduce (0, [], ens', body, s) | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition ) | (k, e, ens, (C.MutInd _ as t),s) -> let t' = unwind k e ens t in if s = [] then t' else C.Appl (t'::(RS.from_stack_list ~unwind s)) | (k, e, ens, (C.MutConstruct _ as t),s) -> let t' = unwind k e ens t in if s = [] then t' else C.Appl (t'::(RS.from_stack_list ~unwind s)) | (k, e, ens, (C.MutCase (mutind,i,_,term,pl) as t),s) -> let decofix = function C.CoFix (i,fl) as t -> let (_,_,body) = List.nth fl i in let body' = let counter = ref (List.length fl) in List.fold_right (fun _ -> decr counter ; S.subst (C.CoFix (!counter,fl))) fl body in (* the term is the result of a reduction; *) (* so it is already unwinded. *) reduce (0,[],[],body',[]) | C.Appl (C.CoFix (i,fl) :: tl) -> let (_,_,body) = List.nth fl i in let body' = let counter = ref (List.length fl) in List.fold_right (fun _ -> decr counter ; S.subst (C.CoFix (!counter,fl))) fl body in (* the term is the result of a reduction; *) (* so it is already unwinded. *) reduce (0,[],[],body',RS.to_stack_list tl) | t -> t in (match decofix (reduce (k,e,ens,term,[])) with C.MutConstruct (_,_,j,_) -> reduce (k, e, ens, (List.nth pl (j-1)), s) | C.Appl (C.MutConstruct (_,_,j,_) :: tl) -> let (arity, r) = let o,_ = CicEnvironment.get_cooked_obj CicUniv.empty_ugraph mutind in match o with C.InductiveDefinition (tl,ingredients,r,_) -> let (_,_,arity,_) = List.nth tl i in (arity,r) | _ -> raise WrongUriToInductiveDefinition in let ts = let num_to_eat = r in let rec eat_first = function (0,l) -> l | (n,he::tl) when n > 0 -> eat_first (n - 1, tl) | _ -> raise (Impossible 5) in eat_first (num_to_eat,tl) in (* ts are already unwinded because they are a sublist of tl *) reduce (k, e, ens, (List.nth pl (j-1)), (RS.to_stack_list ts)@s) | C.Cast _ | C.Implicit _ -> raise (Impossible 2) (* we don't trust our whd ;-) *) | _ -> let t' = unwind k e ens t in if s = [] then t' else C.Appl (t'::(RS.from_stack_list ~unwind s)) ) | (k, e, ens, (C.Fix (i,fl) as t), s) -> let (_,recindex,_,body) = List.nth fl i in let recparam = try Some (RS.from_stack ~unwind (List.nth s recindex)) with _ -> None in (match recparam with Some recparam -> (match reduce (0,[],[],recparam,[]) with (* match recparam with *) C.MutConstruct _ | C.Appl ((C.MutConstruct _)::_) -> (* OLD let body' = let counter = ref (List.length fl) in List.fold_right (fun _ -> decr counter ; S.subst (C.Fix (!counter,fl))) fl body in reduce (k, e, ens, body', s) *) (* NEW *) let leng = List.length fl in let fl' = let unwind_fl (name,recindex,typ,body) = (name,recindex,unwind k e ens typ, unwind' leng k e ens body) in List.map unwind_fl fl in let new_env = let counter = ref 0 in let rec build_env e = if !counter = leng then e else (incr counter ; build_env ((RS.to_env (C.Fix (!counter -1, fl')))::e)) in build_env e in reduce (k+leng, new_env, ens, body, s) | _ -> let t' = unwind k e ens t in if s = [] then t' else C.Appl (t'::(RS.from_stack_list ~unwind s)) ) | None -> let t' = unwind k e ens t in if s = [] then t' else C.Appl (t'::(RS.from_stack_list ~unwind s)) ) | (k, e, ens, (C.CoFix (i,fl) as t),s) -> let t' = unwind k e ens t in if s = [] then t' else C.Appl (t'::(RS.from_stack_list ~unwind s)) and push_exp_named_subst k e ens = function [] -> ens | (uri,t)::tl -> push_exp_named_subst k e ((uri,RS.to_ens (unwind k e ens t))::ens) tl in reduce ;; (* let rec whd context t = try reduce context (0, [], [], t, []) with Not_found -> debug_print (CicPp.ppterm t) ; raise Not_found ;; *) let rec whd ?(delta=true) ?(subst=[]) context t = reduce ~delta ~subst context (0, [], [], t, []) ;; (* DEBUGGING ONLY let whd context t = let res = whd context t in let rescsc = CicReductionNaif.whd context t in if not (CicReductionNaif.are_convertible context res rescsc) then begin debug_print ("PRIMA: " ^ CicPp.ppterm t) ; flush stderr ; debug_print ("DOPO: " ^ CicPp.ppterm res) ; flush stderr ; debug_print ("CSC: " ^ CicPp.ppterm rescsc) ; flush stderr ; CicReductionNaif.fdebug := 0 ; let _ = CicReductionNaif.are_convertible context res rescsc in assert false ; end else res ;; *) end ;; (* module R = Reduction CallByNameStrategy;; module R = Reduction CallByValueStrategy;; module R = Reduction CallByValueStrategyByNameOnConstants;; module R = Reduction LazyCallByValueStrategy;; module R = Reduction LazyCallByValueStrategyByNameOnConstants;; module R = Reduction LazyCallByNameStrategy;; module R = Reduction LazyCallByValueByNameOnConstantsWhenFromStack_ByNameStrategyWhenFromEnvOrEns;; module R = Reduction ClosuresOnStackByValueFromEnvOrEnsStrategy;; module R = Reduction ClosuresOnStackByValueFromEnvOrEnsByNameOnConstantsStrategy;; *) module R = Reduction(ClosuresOnStackByValueFromEnvOrEnsStrategy);; module U = UriManager;; let whd = R.whd;; (* mimic ocaml (<< 3.08) "=" behaviour. Tests physical equality first then * fallbacks to structural equality *) let (===) x y = (Pervasives.compare x y = 0) (* t1, t2 must be well-typed *) let are_convertible ?(subst=[]) ?(metasenv=[]) = let rec aux test_equality_only context t1 t2 ugraph = let aux2 test_equality_only t1 t2 ugraph = (* this trivial euristic cuts down the total time of about five times ;-) *) (* this because most of the time t1 and t2 are "sintactically" the same *) if t1 === t2 then true,ugraph else begin let module C = Cic in match (t1,t2) with (C.Rel n1, C.Rel n2) -> (n1 = n2),ugraph | (C.Var (uri1,exp_named_subst1), C.Var (uri2,exp_named_subst2)) -> if U.eq uri1 uri2 then (try List.fold_right2 (fun (uri1,x) (uri2,y) (b,ugraph) -> let b',ugraph' = aux test_equality_only context x y ugraph in (U.eq uri1 uri2 && b' && b),ugraph' ) exp_named_subst1 exp_named_subst2 (true,ugraph) with Invalid_argument _ -> false,ugraph ) else false,ugraph | (C.Meta (n1,l1), C.Meta (n2,l2)) -> if n1 = n2 then let b2, ugraph1 = let l1 = CicUtil.clean_up_local_context subst metasenv n1 l1 in let l2 = CicUtil.clean_up_local_context subst metasenv n2 l2 in List.fold_left2 (fun (b,ugraph) t1 t2 -> if b then match t1,t2 with None,_ | _,None -> true,ugraph | Some t1',Some t2' -> aux test_equality_only context t1' t2' ugraph else false,ugraph ) (true,ugraph) l1 l2 in if b2 then true,ugraph1 else false,ugraph else false,ugraph (* TASSI: CONSTRAINTS *) | (C.Sort (C.Type t1), C.Sort (C.Type t2)) when test_equality_only -> true,(CicUniv.add_eq t2 t1 ugraph) (* TASSI: CONSTRAINTS *) | (C.Sort (C.Type t1), C.Sort (C.Type t2)) -> true,(CicUniv.add_ge t2 t1 ugraph) (* TASSI: CONSTRAINTS *) | (C.Sort s1, C.Sort (C.Type _)) -> (not test_equality_only),ugraph (* TASSI: CONSTRAINTS *) | (C.Sort s1, C.Sort s2) -> (s1 = s2),ugraph | (C.Prod (name1,s1,t1), C.Prod(_,s2,t2)) -> let b',ugraph' = aux true context s1 s2 ugraph in if b' then aux test_equality_only ((Some (name1, (C.Decl s1)))::context) t1 t2 ugraph' else false,ugraph | (C.Lambda (name1,s1,t1), C.Lambda(_,s2,t2)) -> let b',ugraph' = aux test_equality_only context s1 s2 ugraph in if b' then aux test_equality_only ((Some (name1, (C.Decl s1)))::context) t1 t2 ugraph' else false,ugraph | (C.LetIn (name1,s1,t1), C.LetIn(_,s2,t2)) -> let b',ugraph' = aux test_equality_only context s1 s2 ugraph in if b' then aux test_equality_only ((Some (name1, (C.Def (s1,None))))::context) t1 t2 ugraph' else false,ugraph | (C.Appl l1, C.Appl l2) -> (try List.fold_right2 (fun x y (b,ugraph) -> if b then aux test_equality_only context x y ugraph else false,ugraph) l1 l2 (true,ugraph) with Invalid_argument _ -> false,ugraph ) | (C.Const (uri1,exp_named_subst1), C.Const (uri2,exp_named_subst2)) -> let b' = U.eq uri1 uri2 in if b' then (try List.fold_right2 (fun (uri1,x) (uri2,y) (b,ugraph) -> if b && U.eq uri1 uri2 then aux test_equality_only context x y ugraph else false,ugraph ) exp_named_subst1 exp_named_subst2 (true,ugraph) with Invalid_argument _ -> false,ugraph ) else false,ugraph | (C.MutInd (uri1,i1,exp_named_subst1), C.MutInd (uri2,i2,exp_named_subst2) ) -> let b' = U.eq uri1 uri2 && i1 = i2 in if b' then (try List.fold_right2 (fun (uri1,x) (uri2,y) (b,ugraph) -> if b && U.eq uri1 uri2 then aux test_equality_only context x y ugraph else false,ugraph ) exp_named_subst1 exp_named_subst2 (true,ugraph) with Invalid_argument _ -> false,ugraph ) else false,ugraph | (C.MutConstruct (uri1,i1,j1,exp_named_subst1), C.MutConstruct (uri2,i2,j2,exp_named_subst2) ) -> let b' = U.eq uri1 uri2 && i1 = i2 && j1 = j2 in if b' then (try List.fold_right2 (fun (uri1,x) (uri2,y) (b,ugraph) -> if b && U.eq uri1 uri2 then aux test_equality_only context x y ugraph else false,ugraph ) exp_named_subst1 exp_named_subst2 (true,ugraph) with Invalid_argument _ -> false,ugraph ) else false,ugraph | (C.MutCase (uri1,i1,outtype1,term1,pl1), C.MutCase (uri2,i2,outtype2,term2,pl2)) -> let b' = U.eq uri1 uri2 && i1 = i2 in if b' then let b'',ugraph''=aux test_equality_only context outtype1 outtype2 ugraph in if b'' then let b''',ugraph'''= aux test_equality_only context term1 term2 ugraph'' in List.fold_right2 (fun x y (b,ugraph) -> if b then aux test_equality_only context x y ugraph else false,ugraph) pl1 pl2 (true,ugraph''') else false,ugraph else false,ugraph | (C.Fix (i1,fl1), C.Fix (i2,fl2)) -> let tys = List.map (function (n,_,ty,_) -> Some (C.Name n,(C.Decl ty))) fl1 in if i1 = i2 then List.fold_right2 (fun (_,recindex1,ty1,bo1) (_,recindex2,ty2,bo2) (b,ugraph) -> if b && recindex1 = recindex2 then let b',ugraph' = aux test_equality_only context ty1 ty2 ugraph in if b' then aux test_equality_only (tys@context) bo1 bo2 ugraph' else false,ugraph else false,ugraph) fl1 fl2 (true,ugraph) else false,ugraph | (C.CoFix (i1,fl1), C.CoFix (i2,fl2)) -> let tys = List.map (function (n,ty,_) -> Some (C.Name n,(C.Decl ty))) fl1 in if i1 = i2 then List.fold_right2 (fun (_,ty1,bo1) (_,ty2,bo2) (b,ugraph) -> if b then let b',ugraph' = aux test_equality_only context ty1 ty2 ugraph in if b' then aux test_equality_only (tys@context) bo1 bo2 ugraph' else false,ugraph else false,ugraph) fl1 fl2 (true,ugraph) else false,ugraph | (C.Cast _, _) | (_, C.Cast _) | (C.Implicit _, _) | (_, C.Implicit _) -> assert false | (_,_) -> false,ugraph end in begin debug t1 [t2] "PREWHD"; (* (match t1 with Cic.Meta _ -> debug_print (CicPp.ppterm t1); debug_print (CicPp.ppterm (whd ~subst context t1)); debug_print (CicPp.ppterm t2); debug_print (CicPp.ppterm (whd ~subst context t2)) | _ -> ()); *) let t1' = whd ~subst context t1 in let t2' = whd ~subst context t2 in debug t1' [t2'] "POSTWHD"; aux2 test_equality_only t1' t2' ugraph end in aux false (*c t1 t2 ugraph *) ;; let rec normalize ?(delta=true) ?(subst=[]) ctx term = let module C = Cic in let t = whd ~delta ~subst ctx term in let aux = normalize ~delta ~subst in let decl name t = Some (name, C.Decl t) in let def name t = Some (name, C.Def (t,None)) in match t with | C.Rel n -> t | C.Var (uri,exp_named_subst) -> C.Var (uri, List.map (fun (n,t) -> n,aux ctx t) exp_named_subst) | C.Meta (i,l) -> C.Meta (i,List.map (function Some t -> Some (aux ctx t) | None -> None) l) | C.Sort _ -> t | C.Implicit _ -> t | C.Cast (te,ty) -> C.Cast (aux ctx te, aux ctx ty) | C.Prod (n,s,t) -> let s' = aux ctx s in C.Prod (n, s', aux ((decl n s')::ctx) t) | C.Lambda (n,s,t) -> let s' = aux ctx s in C.Lambda (n, s', aux ((decl n s')::ctx) t) | C.LetIn (n,s,t) -> let s' = aux ctx s in C.LetIn (n, s, aux ((def n s')::ctx) t) | C.Appl (h::l) -> C.Appl (h::(List.map (aux ctx) l)) | C.Appl [] -> assert false | C.Const (uri,exp_named_subst) -> C.Const (uri, List.map (fun (n,t) -> n,aux ctx t) exp_named_subst) | C.MutInd (uri,typeno,exp_named_subst) -> C.MutInd (uri,typeno, List.map (fun (n,t) -> n,aux ctx t) exp_named_subst) | C.MutConstruct (uri,typeno,consno,exp_named_subst) -> C.MutConstruct (uri, typeno, consno, List.map (fun (n,t) -> n,aux ctx t) exp_named_subst) | C.MutCase (sp,i,outt,t,pl) -> C.MutCase (sp,i, aux ctx outt, aux ctx t, List.map (aux ctx) pl) | C.Fix _ -> t | C.CoFix _ -> t let normalize ?delta ?subst ctx term = (* prerr_endline ("NORMALIZE:" ^ CicPp.ppterm term); *) let t = normalize ?delta ?subst ctx term in (* prerr_endline ("NORMALIZED:" ^ CicPp.ppterm t); *) t