(* Copyright (C) 2000, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://cs.unibo.it/helm/. *) exception CicReductionInternalError;; exception WrongUriToInductiveDefinition;; let fdebug = ref 1;; let debug t env s = let rec debug_aux t i = let module C = Cic in let module U = UriManager in CicPp.ppobj (C.Variable ("DEBUG", None, t)) ^ "\n" ^ i in if !fdebug = 0 then begin print_endline (s ^ "\n" ^ List.fold_right debug_aux (t::env) "") ; flush stdout end ;; exception Impossible of int;; exception ReferenceToDefinition;; exception ReferenceToAxiom;; exception ReferenceToVariable;; exception ReferenceToCurrentProof;; exception ReferenceToInductiveDefinition;; type env = Cic.term list;; type stack = Cic.term list;; type config = int * env * Cic.term * stack;; (* k is the length of the environment e *) (* m is the current depth inside the term *) let unwind' m k e t = let module C = Cic in let module S = CicSubstitution in if e = [] & k = 0 then t else let rec unwind_aux m = function C.Rel n as t -> if n <= m then t else let d = try Some (List.nth e (n-m-1)) with _ -> None in (match d with Some t' -> if m = 0 then t' else S.lift m t' | None -> C.Rel (n-k)) | C.Var _ as t -> t | C.Meta _ as t -> t | C.Sort _ as t -> t | C.Implicit as t -> t | C.Cast (te,ty) -> C.Cast (unwind_aux m te, unwind_aux m ty) (*CSC ??? *) | C.Prod (n,s,t) -> C.Prod (n, unwind_aux m s, unwind_aux (m + 1) t) | C.Lambda (n,s,t) -> C.Lambda (n, unwind_aux m s, unwind_aux (m + 1) t) | C.LetIn (n,s,t) -> C.LetIn (n, unwind_aux m s, unwind_aux (m + 1) t) | C.Appl l -> C.Appl (List.map (unwind_aux m) l) | C.Const _ as t -> t | C.Abst _ as t -> t | C.MutInd _ as t -> t | C.MutConstruct _ as t -> t | C.MutCase (sp,cookingsno,i,outt,t,pl) -> C.MutCase (sp,cookingsno,i,unwind_aux m outt, unwind_aux m t, List.map (unwind_aux m) pl) | C.Fix (i,fl) -> let len = List.length fl in let substitutedfl = List.map (fun (name,i,ty,bo) -> (name, i, unwind_aux m ty, unwind_aux (m+len) bo)) fl in C.Fix (i, substitutedfl) | C.CoFix (i,fl) -> let len = List.length fl in let substitutedfl = List.map (fun (name,ty,bo) -> (name, unwind_aux m ty, unwind_aux (m+len) bo)) fl in C.CoFix (i, substitutedfl) in unwind_aux m t ;; let unwind = unwind' 0 ;; let rec reduce : config -> Cic.term = let module C = Cic in let module S = CicSubstitution in function (k, e, (C.Rel n as t), s) -> let d = (* prerr_string ("Rel " ^ string_of_int n) ; flush stderr ; *) try Some (List.nth e (n-1)) with _ -> None in (match d with Some t' -> reduce (0, [],t',s) | None -> if s = [] then C.Rel (n-k) else C.Appl (C.Rel (n-k)::s)) | (k, e, (C.Var uri as t), s) -> (match CicEnvironment.get_cooked_obj uri 0 with C.Definition _ -> raise ReferenceToDefinition | C.Axiom _ -> raise ReferenceToAxiom | C.CurrentProof _ -> raise ReferenceToCurrentProof | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition | C.Variable (_,None,_) -> if s = [] then t else C.Appl (t::s) | C.Variable (_,Some body,_) -> reduce (0, [], body, s) ) | (k, e, (C.Meta _ as t), s) -> if s = [] then t else C.Appl (t::s) | (k, e, (C.Sort _ as t), s) -> t (* s should be empty *) | (k, e, (C.Implicit as t), s) -> t (* s should be empty *) | (k, e, (C.Cast (te,ty) as t), s) -> reduce (k, e,te,s) (* s should be empty *) | (k, e, (C.Prod _ as t), s) -> unwind k e t (* s should be empty *) | (k, e, (C.Lambda (_,_,t) as t'), []) -> unwind k e t' | (k, e, C.Lambda (_,_,t), p::s) -> (* prerr_string ("Lambda body: " ^ CicPp.ppterm t) ; flush stderr ; *) reduce (k+1, p::e,t,s) | (k, e, (C.LetIn (_,m,t) as t'), s) -> let m' = reduce (k,e,m,[]) in reduce (k+1, m'::e,t,s) | (k, e, C.Appl [], s) -> raise (Impossible 1) (* this is lazy | (k, e, C.Appl (he::tl), s) -> let tl' = List.map (unwind k e) tl in reduce (k, e, he, (List.append tl' s)) *) (* this is strict *) | (k, e, C.Appl (he::tl), s) -> (* constants are NOT unfolded *) let red = function C.Const _ as t -> t | t -> reduce (k, e,t,[]) in let tl' = List.map red tl in reduce (k, e, he , List.append tl' s) (* | (k, e, C.Appl ((C.Lambda _ as he)::tl), s) | (k, e, C.Appl ((C.Const _ as he)::tl), s) | (k, e, C.Appl ((C.MutCase _ as he)::tl), s) | (k, e, C.Appl ((C.Fix _ as he)::tl), s) -> (* strict evaluation, but constants are NOT unfolded *) let red = function C.Const _ as t -> t | t -> reduce (k, e,t,[]) in let tl' = List.map red tl in reduce (k, e, he , List.append tl' s) | (k, e, C.Appl l, s) -> C.Appl (List.append (List.map (unwind k e) l) s) *) | (k, e, (C.Const (uri,cookingsno) as t), s) -> (match CicEnvironment.get_cooked_obj uri cookingsno with C.Definition (_,body,_,_) -> reduce (0, [], body, s) (* constants are closed *) | C.Axiom _ -> if s = [] then t else C.Appl (t::s) | C.Variable _ -> raise ReferenceToVariable | C.CurrentProof (_,_,body,_) -> reduce (0, [], body, s) | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition ) | (k, e, (C.Abst _ as t), s) -> t (* s should be empty ????? *) | (k, e, (C.MutInd (uri,_,_) as t),s) -> let t' = unwind k e t in if s = [] then t' else C.Appl (t'::s) | (k, e, (C.MutConstruct (uri,_,_,_) as t),s) -> let t' = unwind k e t in if s = [] then t' else C.Appl (t'::s) | (k, e, (C.MutCase (mutind,cookingsno,i,_,term,pl) as t),s) -> let decofix = function C.CoFix (i,fl) as t -> let (_,_,body) = List.nth fl i in let body' = let counter = ref (List.length fl) in List.fold_right (fun _ -> decr counter ; S.subst (C.CoFix (!counter,fl))) fl body in reduce (0,[],body',[]) | C.Appl (C.CoFix (i,fl) :: tl) -> let (_,_,body) = List.nth fl i in let body' = let counter = ref (List.length fl) in List.fold_right (fun _ -> decr counter ; S.subst (C.CoFix (!counter,fl))) fl body in reduce (0,[], body', tl) | t -> t in (match decofix (reduce (k, e,term,[])) with C.MutConstruct (_,_,_,j) -> reduce (k, e, (List.nth pl (j-1)), s) | C.Appl (C.MutConstruct (_,_,_,j) :: tl) -> let (arity, r, num_ingredients) = match CicEnvironment.get_obj mutind with C.InductiveDefinition (tl,ingredients,r) -> let (_,_,arity,_) = List.nth tl i and num_ingredients = List.fold_right (fun (k,l) i -> if k < cookingsno then i + List.length l else i ) ingredients 0 in (arity,r,num_ingredients) | _ -> raise WrongUriToInductiveDefinition in let ts = let num_to_eat = r + num_ingredients in let rec eat_first = function (0,l) -> l | (n,he::tl) when n > 0 -> eat_first (n - 1, tl) | _ -> raise (Impossible 5) in eat_first (num_to_eat,tl) in reduce (k, e, (List.nth pl (j-1)),(ts@s)) | C.Abst _| C.Cast _ | C.Implicit -> raise (Impossible 2) (* we don't trust our whd ;-) *) | _ -> let t' = unwind k e t in if s = [] then t' else C.Appl (t'::s) ) | (k, e, (C.Fix (i,fl) as t), s) -> let (_,recindex,_,body) = List.nth fl i in let recparam = try Some (List.nth s recindex) with _ -> None in (match recparam with Some recparam -> (match reduce (0,[],recparam,[]) with (* match recparam with *) C.MutConstruct _ | C.Appl ((C.MutConstruct _)::_) -> (* OLD let body' = let counter = ref (List.length fl) in List.fold_right (fun _ -> decr counter ; S.subst (C.Fix (!counter,fl))) fl body in reduce (k, e, body', s) *) (* NEW *) let leng = List.length fl in let fl' = let unwind_fl (name,recindex,typ,body) = (name,recindex,unwind' leng k e typ, unwind' leng k e body) in List.map unwind_fl fl in let new_env = let counter = ref leng in let rec build_env e = if !counter = 0 then e else (decr counter; build_env ((C.Fix (!counter,fl'))::e)) in build_env e in reduce (k+leng, new_env, body,s) | _ -> let t' = unwind k e t in if s = [] then t' else C.Appl (t'::s) ) | None -> let t' = unwind k e t in if s = [] then t' else C.Appl (t'::s) ) | (k, e,(C.CoFix (i,fl) as t),s) -> let t' = unwind k e t in if s = [] then t' else C.Appl (t'::s);; let rec whd = let module C = Cic in function C.Rel _ as t -> t | C.Var _ as t -> reduce (0, [], t, []) | C.Meta _ as t -> t | C.Sort _ as t -> t | C.Implicit as t -> t | C.Cast (te,ty) -> whd te | C.Prod _ as t -> t | C.Lambda _ as t -> t | C.LetIn (n,s,t) -> reduce (1, [s], t, []) | C.Appl [] -> raise (Impossible 1) | C.Appl (he::tl) -> reduce (0, [], he, tl) | C.Const _ as t -> reduce (0, [], t, []) | C.Abst _ as t -> t | C.MutInd _ as t -> t | C.MutConstruct _ as t -> t | C.MutCase _ as t -> reduce (0, [], t, []) | C.Fix _ as t -> reduce (0, [], t, []) | C.CoFix _ as t -> reduce (0, [], t, []) ;; (* let whd t = reduce (0, [],t,[]);; let res = reduce (0, [],t,[]) in let rescsc = CicReductionNaif.whd t in if not (CicReductionNaif.are_convertible res rescsc) then begin prerr_endline ("PRIMA: " ^ CicPp.ppterm t) ; flush stderr ; prerr_endline ("DOPO: " ^ CicPp.ppterm res) ; flush stderr ; prerr_endline ("CSC: " ^ CicPp.ppterm rescsc) ; flush stderr ; assert false ; end else res ;; *) (* t1, t2 must be well-typed *) let are_convertible = let rec aux t1 t2 = if t1 = t2 then true else let aux2 t1 t2 = let module U = UriManager in let module C = Cic in match (t1,t2) with (C.Rel n1, C.Rel n2) -> n1 = n2 | (C.Var uri1, C.Var uri2) -> U.eq uri1 uri2 | (C.Meta n1, C.Meta n2) -> n1 = n2 | (C.Sort s1, C.Sort s2) -> true (*CSC da finire con gli universi *) | (C.Prod (_,s1,t1), C.Prod(_,s2,t2)) -> aux s1 s2 && aux t1 t2 | (C.Lambda (_,s1,t1), C.Lambda(_,s2,t2)) -> aux s1 s2 && aux t1 t2 | (C.Appl l1, C.Appl l2) -> (try List.fold_right2 (fun x y b -> aux x y && b) l1 l2 true with Invalid_argument _ -> false ) | (C.Const (uri1,_), C.Const (uri2,_)) -> U.eq uri1 uri2 | (C.MutInd (uri1,k1,i1), C.MutInd (uri2,k2,i2)) -> U.eq uri1 uri2 && i1 = i2 | (C.MutConstruct (uri1,_,i1,j1), C.MutConstruct (uri2,_,i2,j2)) -> U.eq uri1 uri2 && i1 = i2 && j1 = j2 | (C.MutCase (uri1,_,i1,outtype1,term1,pl1), C.MutCase (uri2,_,i2,outtype2,term2,pl2)) -> (* aux outtype1 outtype2 should be true if aux pl1 pl2 *) U.eq uri1 uri2 && i1 = i2 && aux outtype1 outtype2 && aux term1 term2 && List.fold_right2 (fun x y b -> b && aux x y) pl1 pl2 true | (C.Fix (i1,fl1), C.Fix (i2,fl2)) -> i1 = i2 && List.fold_right2 (fun (_,recindex1,ty1,bo1) (_,recindex2,ty2,bo2) b -> b && recindex1 = recindex2 && aux ty1 ty2 && aux bo1 bo2) fl1 fl2 true | (C.CoFix (i1,fl1), C.CoFix (i2,fl2)) -> i1 = i2 && List.fold_right2 (fun (_,ty1,bo1) (_,ty2,bo2) b -> b && aux ty1 ty2 && aux bo1 bo2) fl1 fl2 true | (_,_) -> false in if aux2 t1 t2 then true else aux2 (whd t1) (whd t2) in aux ;;