(* Copyright (C) 2000, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://cs.unibo.it/helm/. *) (***************************************************************************) (* *) (* PROJECT HELM *) (* *) (* Andrea Asperti *) (* 17/06/2003 *) (* *) (***************************************************************************) module P = Mpresentation module B = Box let p_mtr a b = Mpresentation.Mtr(a,b) let p_mtd a b = Mpresentation.Mtd(a,b) let p_mtable a b = Mpresentation.Mtable(a,b) let p_mtext a b = Mpresentation.Mtext(a,b) let p_mi a b = Mpresentation.Mi(a,b) let p_mo a b = Mpresentation.Mo(a,b) let p_mrow a b = Mpresentation.Mrow(a,b) let p_mphantom a b = Mpresentation.Mphantom(a,b) let rec split n l = if n = 0 then [],l else let l1,l2 = split (n-1) (List.tl l) in (List.hd l)::l1,l2 ;; let is_big_general countterm p = let maxsize = Ast2pres.maxsize in let module Con = Content in let rec countp current_size p = if current_size > maxsize then current_size else let c1 = (countcontext current_size p.Con.proof_context) in if c1 > maxsize then c1 else let c2 = (countapplycontext c1 p.Con.proof_apply_context) in if c2 > maxsize then c2 else countconclude c2 p.Con.proof_conclude and countcontext current_size c = List.fold_left countcontextitem current_size c and countcontextitem current_size e = if current_size > maxsize then maxsize else (match e with `Declaration d -> (match d.Con.dec_name with Some s -> current_size + 4 + (String.length s) | None -> prerr_endline "NO NAME!!"; assert false) | `Hypothesis h -> (match h.Con.dec_name with Some s -> current_size + 4 + (String.length s) | None -> prerr_endline "NO NAME!!"; assert false) | `Proof p -> countp current_size p | `Definition d -> (match d.Con.def_name with Some s -> let c1 = (current_size + 4 + (String.length s)) in (countterm c1 d.Con.def_term) | None -> prerr_endline "NO NAME!!"; assert false) | `Joint ho -> maxsize + 1) (* we assume is big *) and countapplycontext current_size ac = List.fold_left countp current_size ac and countconclude current_size co = if current_size > maxsize then current_size else let c1 = countargs current_size co.Con.conclude_args in if c1 > maxsize then c1 else (match co.Con.conclude_conclusion with Some concl -> countterm c1 concl | None -> c1) and countargs current_size args = List.fold_left countarg current_size args and countarg current_size arg = if current_size > maxsize then current_size else (match arg with Con.Aux _ -> current_size | Con.Premise prem -> (match prem.Con.premise_binder with Some s -> current_size + (String.length s) | None -> current_size + 7) | Con.Lemma lemma -> current_size + (String.length lemma.Con.lemma_name) | Con.Term t -> countterm current_size t | Con.ArgProof p -> countp current_size p | Con.ArgMethod s -> (maxsize + 1)) in let size = (countp 0 p) in (size > maxsize) ;; let is_big = is_big_general (Ast2pres.countterm) ;; let get_xref = let module Con = Content in function `Declaration d | `Hypothesis d -> d.Con.dec_id | `Proof p -> p.Con.proof_id | `Definition d -> d.Con.def_id | `Joint jo -> jo.Con.joint_id ;; let make_row ?(attrs=[]) items concl = match concl with B.V _ -> (* big! *) B.b_v attrs [B.b_h [] items; B.b_indent concl] | _ -> (* small *) B.b_h attrs (items@[B.b_space; concl]) ;; let make_concl ?(attrs=[]) verb concl = match concl with B.V _ -> (* big! *) B.b_v attrs [ B.b_kw verb; B.b_indent concl] | _ -> (* small *) B.b_h attrs [ B.b_kw verb; B.b_space; concl ] ;; let make_args_for_apply term2pres args = let module Con = Content in let make_arg_for_apply is_first arg row = let res = match arg with Con.Aux n -> assert false | Con.Premise prem -> let name = (match prem.Con.premise_binder with None -> "previous" | Some s -> s) in (B.b_object (P.Mi ([], name)))::row | Con.Lemma lemma -> (B.b_object (P.Mi([],lemma.Con.lemma_name)))::row | Con.Term t -> if is_first then (term2pres t)::row else (B.b_object (P.Mi([],"_")))::row | Con.ArgProof _ | Con.ArgMethod _ -> (B.b_object (P.Mi([],"_")))::row in if is_first then res else B.skip::res in match args with hd::tl -> make_arg_for_apply true hd (List.fold_right (make_arg_for_apply false) tl []) | _ -> assert false ;; let get_name = function | Some s -> s | None -> "_" let rec justification term2pres p = let module Con = Content in let module P = Mpresentation in if ((p.Con.proof_conclude.Con.conclude_method = "Exact") or ((p.Con.proof_context = []) & (p.Con.proof_apply_context = []) & (p.Con.proof_conclude.Con.conclude_method = "Apply"))) then let pres_args = make_args_for_apply term2pres p.Con.proof_conclude.Con.conclude_args in B.H([], (B.b_kw "by")::B.b_space:: B.Text([],"(")::pres_args@[B.Text([],")")]) else proof2pres term2pres p and proof2pres term2pres p = let rec proof2pres p = let module Con = Content in let indent = let is_decl e = (match e with `Declaration _ | `Hypothesis _ -> true | _ -> false) in ((List.filter is_decl p.Con.proof_context) != []) in let omit_conclusion = (not indent) && (p.Con.proof_context != []) in let concl = (match p.Con.proof_conclude.Con.conclude_conclusion with None -> None | Some t -> Some (term2pres t)) in let body = let presconclude = conclude2pres p.Con.proof_conclude indent omit_conclusion in let presacontext = acontext2pres p.Con.proof_apply_context presconclude indent in context2pres p.Con.proof_context presacontext in match p.Con.proof_name with None -> body | Some name -> let action = match concl with None -> body | Some ac -> B.Action ([None,"type","toggle"], [(make_concl ~attrs:[Some "helm", "xref", p.Con.proof_id] "proof of" ac); body]) in B.V ([], [B.Text ([],"(" ^ name ^ ")"); B.indent action]) and context2pres c continuation = (* we generate a subtable for each context element, for selection purposes The table generated by the head-element does not have an xref; the whole context-proof is already selectable *) match c with [] -> continuation | hd::tl -> let continuation' = List.fold_right (fun ce continuation -> let xref = get_xref ce in B.V([Some "helm", "xref", xref ], [B.H([Some "helm", "xref", "ce_"^xref],[ce2pres ce]); continuation])) tl continuation in let hd_xref= get_xref hd in B.V([], [B.H([Some "helm", "xref", "ce_"^hd_xref], [ce2pres hd]); continuation']) and ce2pres = let module Con = Content in function `Declaration d -> (match d.Con.dec_name with Some s -> let ty = term2pres d.Con.dec_type in B.H ([], [(B.b_kw "Assume"); B.b_space; B.Object ([], P.Mi([],s)); B.Text([],":"); ty]) | None -> prerr_endline "NO NAME!!"; assert false) | `Hypothesis h -> (match h.Con.dec_name with Some s -> let ty = term2pres h.Con.dec_type in B.H ([], [(B.b_kw "Suppose"); B.b_space; B.Text([],"("); B.Object ([], P.Mi ([],s)); B.Text([],")"); B.b_space; ty]) | None -> prerr_endline "NO NAME!!"; assert false) | `Proof p -> proof2pres p | `Definition d -> (match d.Con.def_name with Some s -> let term = term2pres d.Con.def_term in B.H ([], [B.Text([],"Let "); B.Object ([], P.Mi([],s)); B.Text([]," = "); term]) | None -> prerr_endline "NO NAME!!"; assert false) | `Joint ho -> B.Text ([],"jointdef") and acontext2pres ac continuation indent = let module Con = Content in List.fold_right (fun p continuation -> let hd = if indent then B.indent (proof2pres p) else proof2pres p in B.V([Some "helm","xref",p.Con.proof_id], [B.H([Some "helm","xref","ace_"^p.Con.proof_id],[hd]); continuation])) ac continuation and conclude2pres conclude indent omit_conclusion = let module Con = Content in let module P = Mpresentation in let tconclude_body = match conclude.Con.conclude_conclusion with Some t when not omit_conclusion or (* CSC: I ignore the omit_conclusion flag in this case. *) (* CSC: Is this the correct behaviour? In the stylesheets *) (* CSC: we simply generated nothing (i.e. the output type *) (* CSC: of the function should become an option. *) conclude.Con.conclude_method = "BU_Conversion" -> let concl = (term2pres t) in if conclude.Con.conclude_method = "BU_Conversion" then make_concl "that is equivalent to" concl else if conclude.Con.conclude_method = "FalseInd" then (* false ind is in charge to add the conclusion *) falseind conclude else let conclude_body = conclude_aux conclude in let ann_concl = if conclude.Con.conclude_method = "TD_Conversion" then make_concl "that is equivalent to" concl else make_concl "we conclude" concl in B.V ([], [conclude_body; ann_concl]) | _ -> conclude_aux conclude in if indent then B.indent (B.H ([Some "helm", "xref", conclude.Con.conclude_id], [tconclude_body])) else B.H ([Some "helm", "xref", conclude.Con.conclude_id],[tconclude_body]) and conclude_aux conclude = let module Con = Content in let module P = Mpresentation in if conclude.Con.conclude_method = "TD_Conversion" then let expected = (match conclude.Con.conclude_conclusion with None -> B.Text([],"NO EXPECTED!!!") | Some c -> term2pres c) in let subproof = (match conclude.Con.conclude_args with [Con.ArgProof p] -> p | _ -> assert false) in let synth = (match subproof.Con.proof_conclude.Con.conclude_conclusion with None -> B.Text([],"NO SYNTH!!!") | Some c -> (term2pres c)) in B.V ([], [make_concl "we must prove" expected; make_concl "or equivalently" synth; proof2pres subproof]) else if conclude.Con.conclude_method = "BU_Conversion" then assert false else if conclude.Con.conclude_method = "Exact" then let arg = (match conclude.Con.conclude_args with [Con.Term t] -> term2pres t | _ -> assert false) in (match conclude.Con.conclude_conclusion with None -> B.b_h [] [B.b_kw "Consider"; B.b_space; arg] | Some c -> let conclusion = term2pres c in make_row [arg; B.b_space; B.Text([],"proves")] conclusion ) else if conclude.Con.conclude_method = "Intros+LetTac" then (match conclude.Con.conclude_args with [Con.ArgProof p] -> proof2pres p | _ -> assert false) (* OLD CODE let conclusion = (match conclude.Con.conclude_conclusion with None -> B.Text([],"NO Conclusion!!!") | Some c -> term2pres c) in (match conclude.Con.conclude_args with [Con.ArgProof p] -> B.V ([None,"align","baseline 1"; None,"equalrows","false"; None,"columnalign","left"], [B.H([],[B.Object([],proof2pres p)]); B.H([],[B.Object([], (make_concl "we proved 1" conclusion))])]); | _ -> assert false) *) else if (conclude.Con.conclude_method = "Case") then case conclude else if (conclude.Con.conclude_method = "ByInduction") then byinduction conclude else if (conclude.Con.conclude_method = "Exists") then exists conclude else if (conclude.Con.conclude_method = "AndInd") then andind conclude else if (conclude.Con.conclude_method = "FalseInd") then falseind conclude else if (conclude.Con.conclude_method = "Rewrite") then let justif = (match (List.nth conclude.Con.conclude_args 6) with Con.ArgProof p -> justification term2pres p | _ -> assert false) in let term1 = (match List.nth conclude.Con.conclude_args 2 with Con.Term t -> term2pres t | _ -> assert false) in let term2 = (match List.nth conclude.Con.conclude_args 5 with Con.Term t -> term2pres t | _ -> assert false) in B.V ([], [B.H ([],[ (B.b_kw "rewrite"); B.b_space; term1; B.b_space; (B.b_kw "with"); B.b_space; term2; B.indent justif])]) else if conclude.Con.conclude_method = "Apply" then let pres_args = make_args_for_apply term2pres conclude.Con.conclude_args in B.H([], (B.b_kw "by"):: B.b_space:: B.Text([],"(")::pres_args@[B.Text([],")")]) else B.V ([], [B.Text([],"Apply method" ^ conclude.Con.conclude_method ^ " to"); (B.indent (B.V ([], args2pres conclude.Con.conclude_args)))]) and args2pres l = List.map arg2pres l and arg2pres = let module Con = Content in function Con.Aux n -> B.Text ([],"aux " ^ n) | Con.Premise prem -> B.Text ([],"premise") | Con.Lemma lemma -> B.Text ([],"lemma") | Con.Term t -> term2pres t | Con.ArgProof p -> proof2pres p | Con.ArgMethod s -> B.Text ([],"method") and case conclude = let module Con = Content in let proof_conclusion = (match conclude.Con.conclude_conclusion with None -> B.Text([],"No conclusion???") | Some t -> term2pres t) in let arg,args_for_cases = (match conclude.Con.conclude_args with Con.Aux(_)::Con.Aux(_)::Con.Term(_)::arg::tl -> arg,tl | _ -> assert false) in let case_on = let case_arg = (match arg with Con.Aux n -> B.Text ([],"an aux???") | Con.Premise prem -> (match prem.Con.premise_binder with None -> B.Text ([],"the previous result") | Some n -> B.Object ([], P.Mi([],n))) | Con.Lemma lemma -> B.Object ([], P.Mi([],lemma.Con.lemma_name)) | Con.Term t -> term2pres t | Con.ArgProof p -> B.Text ([],"a proof???") | Con.ArgMethod s -> B.Text ([],"a method???")) in (make_concl "we proceede by cases on" case_arg) in let to_prove = (make_concl "to prove" proof_conclusion) in B.V ([], case_on::to_prove::(make_cases args_for_cases)) and byinduction conclude = let module Con = Content in let proof_conclusion = (match conclude.Con.conclude_conclusion with None -> B.Text([],"No conclusion???") | Some t -> term2pres t) in let inductive_arg,args_for_cases = (match conclude.Con.conclude_args with Con.Aux(n)::_::tl -> let l1,l2 = split (int_of_string n) tl in let last_pos = (List.length l2)-1 in List.nth l2 last_pos,l1 | _ -> assert false) in let induction_on = let arg = (match inductive_arg with Con.Aux n -> B.Text ([],"an aux???") | Con.Premise prem -> (match prem.Con.premise_binder with None -> B.Text ([],"the previous result") | Some n -> B.Object ([], P.Mi([],n))) | Con.Lemma lemma -> B.Object ([], P.Mi([],lemma.Con.lemma_name)) | Con.Term t -> term2pres t | Con.ArgProof p -> B.Text ([],"a proof???") | Con.ArgMethod s -> B.Text ([],"a method???")) in (make_concl "we proceede by induction on" arg) in let to_prove = (make_concl "to prove" proof_conclusion) in B.V ([], induction_on::to_prove:: (make_cases args_for_cases)) and make_cases l = List.map make_case l and make_case = let module Con = Content in function Con.ArgProof p -> let name = (match p.Con.proof_name with None -> B.Text([],"no name for case!!") | Some n -> B.Object ([], P.Mi([],n))) in let indhyps,args = List.partition (function `Hypothesis h -> h.Con.dec_inductive | _ -> false) p.Con.proof_context in let pattern_aux = List.fold_right (fun e p -> let dec = (match e with `Declaration h | `Hypothesis h -> let name = (match h.Con.dec_name with None -> "NO NAME???" | Some n ->n) in [B.b_space; B.Object ([], P.Mi ([],name)); B.Text([],":"); (term2pres h.Con.dec_type)] | _ -> [B.Text ([],"???")]) in dec@p) args [] in let pattern = B.H ([], (B.Text([],"Case")::B.b_space::name::pattern_aux)@ [B.b_space; B.Text([],"->")]) in let subconcl = (match p.Con.proof_conclude.Con.conclude_conclusion with None -> B.Text([],"No conclusion!!!") | Some t -> term2pres t) in let asubconcl = B.indent (make_concl "the thesis becomes" subconcl) in let induction_hypothesis = (match indhyps with [] -> [] | _ -> let text = B.indent (B.Text([],"by induction hypothesis we know:")) in let make_hyp = function `Hypothesis h -> let name = (match h.Con.dec_name with None -> "no name" | Some s -> s) in B.indent (B.H ([], [B.Text([],"("); B.Object ([], P.Mi ([],name)); B.Text([],")"); B.b_space; term2pres h.Con.dec_type])) | _ -> assert false in let hyps = List.map make_hyp indhyps in text::hyps) in (* let acontext = acontext2pres_old p.Con.proof_apply_context true in *) let body = conclude2pres p.Con.proof_conclude true false in let presacontext = let acontext_id = match p.Con.proof_apply_context with [] -> p.Con.proof_conclude.Con.conclude_id | {Con.proof_id = id}::_ -> id in B.Action([None,"type","toggle"], [B.indent (B.Text ([None,"color","red" ; Some "helm", "xref", acontext_id],"Proof")) ; acontext2pres p.Con.proof_apply_context body true]) in B.V ([], pattern::asubconcl::induction_hypothesis@[presacontext]) | _ -> assert false and falseind conclude = let module P = Mpresentation in let module Con = Content in let proof_conclusion = (match conclude.Con.conclude_conclusion with None -> B.Text([],"No conclusion???") | Some t -> term2pres t) in let case_arg = (match conclude.Con.conclude_args with [Con.Aux(n);_;case_arg] -> case_arg | _ -> assert false; (* List.map (ContentPp.parg 0) conclude.Con.conclude_args; assert false *)) in let arg = (match case_arg with Con.Aux n -> assert false | Con.Premise prem -> (match prem.Con.premise_binder with None -> [B.Text([],"Contradiction, hence")] | Some n -> [B.Object ([],P.Mi([],n)); B.skip;B.Text([],"is contradictory, hence")]) | Con.Lemma lemma -> [B.Object ([], P.Mi([],lemma.Con.lemma_name)); B.skip; B.Text([],"is contradictory, hence")] | _ -> assert false) in (* let body = proof2pres {proof with Con.proof_context = tl} in *) make_row arg proof_conclusion and andind conclude = let module P = Mpresentation in let module Con = Content in let proof_conclusion = (match conclude.Con.conclude_conclusion with None -> B.Text([],"No conclusion???") | Some t -> term2pres t) in let proof,case_arg = (match conclude.Con.conclude_args with [Con.Aux(n);_;Con.ArgProof proof;case_arg] -> proof,case_arg | _ -> assert false; (* List.map (ContentPp.parg 0) conclude.Con.conclude_args; assert false *)) in let arg = (match case_arg with Con.Aux n -> assert false | Con.Premise prem -> (match prem.Con.premise_binder with None -> [] | Some n -> [(B.b_kw "by"); B.b_space; B.Object([], P.Mi([],n))]) | Con.Lemma lemma -> [(B.b_kw "by");B.skip; B.Object([], P.Mi([],lemma.Con.lemma_name))] | _ -> assert false) in match proof.Con.proof_context with `Hypothesis hyp1::`Hypothesis hyp2::tl -> let get_name hyp = (match hyp.Con.dec_name with None -> "_" | Some s -> s) in let preshyp1 = B.H ([], [B.Text([],"("); B.Object ([], P.Mi([],get_name hyp1)); B.Text([],")"); B.skip; term2pres hyp1.Con.dec_type]) in let preshyp2 = B.H ([], [B.Text([],"("); B.Object ([], P.Mi([],get_name hyp2)); B.Text([],")"); B.skip; term2pres hyp2.Con.dec_type]) in (* let body = proof2pres {proof with Con.proof_context = tl} in *) let body = conclude2pres proof.Con.proof_conclude false true in let presacontext = acontext2pres proof.Con.proof_apply_context body false in B.V ([], [B.H ([],arg@[B.skip; B.Text([],"we have")]); preshyp1; B.Text([],"and"); preshyp2; presacontext]); | _ -> assert false and exists conclude = let module P = Mpresentation in let module Con = Content in let proof_conclusion = (match conclude.Con.conclude_conclusion with None -> B.Text([],"No conclusion???") | Some t -> term2pres t) in let proof = (match conclude.Con.conclude_args with [Con.Aux(n);_;Con.ArgProof proof;_] -> proof | _ -> assert false; (* List.map (ContentPp.parg 0) conclude.Con.conclude_args; assert false *)) in match proof.Con.proof_context with `Declaration decl::`Hypothesis hyp::tl | `Hypothesis decl::`Hypothesis hyp::tl -> let get_name decl = (match decl.Con.dec_name with None -> "_" | Some s -> s) in let presdecl = B.H ([], [(B.b_kw "let"); B.skip; B.Object ([], P.Mi([],get_name decl)); B.Text([],":"); term2pres decl.Con.dec_type]) in let suchthat = B.H ([], [(B.b_kw "such that"); B.skip; B.Text([],"("); B.Object ([], P.Mi([],get_name hyp)); B.Text([],")"); B.skip; term2pres hyp.Con.dec_type]) in (* let body = proof2pres {proof with Con.proof_context = tl} in *) let body = conclude2pres proof.Con.proof_conclude false true in let presacontext = acontext2pres proof.Con.proof_apply_context body false in B.V ([], [presdecl; suchthat; presacontext]); | _ -> assert false in proof2pres p ;; exception ToDo;; let counter = ref 0 let conjecture2pres term2pres (id, n, context, ty) = (B.b_h [Some "helm", "xref", id] (((List.map (function | None -> B.b_h [] [ B.b_object (p_mi [] "_") ; B.b_object (p_mo [] ":?") ; B.b_object (p_mi [] "_")] | Some (`Declaration d) | Some (`Hypothesis d) -> let { Content.dec_name = dec_name ; Content.dec_type = ty } = d in B.b_h [] [ B.b_object (p_mi [] (match dec_name with None -> "_" | Some n -> n)); B.b_text [] ":"; term2pres ty ] | Some (`Definition d) -> let { Content.def_name = def_name ; Content.def_term = bo } = d in B.b_h [] [ B.b_object (p_mi [] (match def_name with None -> "_" | Some n -> n)) ; B.b_text [] ":=" ; term2pres bo] | Some (`Proof p) -> let proof_name = p.Content.proof_name in B.b_h [] [ B.b_object (p_mi [] (match proof_name with None -> "_" | Some n -> n)) ; B.b_text [] ":=" ; proof2pres term2pres p]) (List.rev context)) @ [ B.b_text [] "|-" ; B.b_object (p_mi [] (string_of_int n)) ; B.b_text [] ":" ; term2pres ty ]))) let metasenv2pres term2pres = function | None -> [] | Some metasenv' -> (* Conjectures are in their own table to make *) (* diffing the DOM trees easier. *) [B.b_v [] ((B.b_text [] ("Conjectures:" ^ (let _ = incr counter; in (string_of_int !counter)))) :: (List.map (conjecture2pres term2pres) metasenv'))] let params2pres params = let param2pres uri = B.b_text [Some "xlink", "href", UriManager.string_of_uri uri] (UriManager.name_of_uri uri) in let rec spatiate = function | [] -> [] | hd :: [] -> [hd] | hd :: tl -> hd :: B.b_text [] ", " :: spatiate tl in match params with | [] -> [] | p -> let params = spatiate (List.map param2pres p) in [B.b_space; B.b_h [] (B.b_text [] "[" :: params @ [ B.b_text [] "]" ])] let recursion_kind2pres params kind = let kind = match kind with | `Recursive _ -> "Recursive definition" | `CoRecursive -> "CoRecursive definition" | `Inductive _ -> "Inductive definition" | `CoInductive _ -> "CoInductive definition" in B.b_h [] (B.b_text [] kind :: params2pres params) let inductive2pres term2pres ind = let constructor2pres decl = B.b_h [] [ B.b_text [] ("| " ^ get_name decl.Content.dec_name ^ ":"); B.b_space; term2pres decl.Content.dec_type ] in B.b_v [] (B.b_h [] [ B.b_text [] (ind.Content.inductive_name ^ " of arity "); term2pres ind.Content.inductive_type ] :: List.map constructor2pres ind.Content.inductive_constructors) let joint_def2pres term2pres def = match def with | `Inductive ind -> inductive2pres term2pres ind | _ -> assert false (* ZACK or raise ToDo? *) let content2pres term2pres (id,params,metasenv,obj) = match obj with | `Def (Content.Const, thesis, `Proof p) -> let name = get_name p.Content.proof_name in B.b_v [Some "helm","xref","id"] ([ B.b_h [] (B.b_text [] ("Proof " ^ name) :: params2pres params); B.b_text [] "Thesis:"; B.indent (term2pres thesis) ] @ metasenv2pres term2pres metasenv @ [proof2pres term2pres p]) | `Def (_, ty, `Definition body) -> let name = get_name body.Content.def_name in B.b_v [Some "helm","xref","id"] ([B.b_h [] (B.b_text [] ("Definition " ^ name) :: params2pres params); B.b_text [] "Type:"; B.indent (term2pres ty)] @ metasenv2pres term2pres metasenv @ [term2pres body.Content.def_term]) | `Decl (_, `Declaration decl) | `Decl (_, `Hypothesis decl) -> let name = get_name decl.Content.dec_name in B.b_v [Some "helm","xref","id"] ([B.b_h [] (B.b_text [] ("Axiom " ^ name) :: params2pres params); B.b_text [] "Type:"; B.indent (term2pres decl.Content.dec_type)] @ metasenv2pres term2pres metasenv) | `Joint joint -> B.b_v [] (recursion_kind2pres params joint.Content.joint_kind :: List.map (joint_def2pres term2pres) joint.Content.joint_defs) | _ -> raise ToDo ;; (* let content2pres ~ids_to_inner_sorts = content2pres (function p -> (Cexpr2pres.cexpr2pres_charcount (Content_expressions.acic2cexpr ids_to_inner_sorts p))) ;; *) let content2pres ~ids_to_inner_sorts = content2pres (fun annterm -> let (ast, ids_to_uris) as arg = Acic2Ast.ast_of_acic ids_to_inner_sorts annterm in let astBox = Ast2pres.ast2astBox arg in Box.map (fun ast -> Ast2pres.ast2mpres (ast, ids_to_uris)) astBox)