(* Copyright (C) 2000, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://cs.unibo.it/helm/. *) open Printf exception UnificationFailure of string Lazy.t;; exception Uncertain of string Lazy.t;; exception AssertFailure of string Lazy.t;; let verbose = false;; let debug_print = fun _ -> () let profiler_toa = HExtlib.profile "fo_unif_subst.type_of_aux'" let profiler_beta_expand = HExtlib.profile "fo_unif_subst.beta_expand" let profiler_deref = HExtlib.profile "fo_unif_subst.deref'" let profiler_are_convertible = HExtlib.profile "fo_unif_subst.are_convertible" let type_of_aux' metasenv subst context term ugraph = let foo () = try CicTypeChecker.type_of_aux' ~subst metasenv context term ugraph with CicTypeChecker.TypeCheckerFailure msg -> let msg = lazy (sprintf "Kernel Type checking error: %s\n%s\ncontext=\n%s\nmetasenv=\n%s\nsubstitution=\n%s\nException:\n%s.\nToo bad." (CicMetaSubst.ppterm subst term) (CicMetaSubst.ppterm [] term) (CicMetaSubst.ppcontext subst context) (CicMetaSubst.ppmetasenv subst metasenv) (CicMetaSubst.ppsubst subst) (Lazy.force msg)) in raise (AssertFailure msg) | CicTypeChecker.AssertFailure msg -> let msg = lazy (sprintf "Kernel Type checking assertion failure: %s\n%s\ncontext=\n%s\nmetasenv=\n%s\nsubstitution=\n%s\nException:\n%s.\nToo bad." (CicMetaSubst.ppterm subst term) (CicMetaSubst.ppterm [] term) (CicMetaSubst.ppcontext subst context) (CicMetaSubst.ppmetasenv subst metasenv) (CicMetaSubst.ppsubst subst) (Lazy.force msg)) in raise (AssertFailure msg) in profiler_toa.HExtlib.profile foo () ;; let exists_a_meta l = List.exists (function Cic.Meta _ -> true | _ -> false) l let rec deref subst t = let snd (_,a,_) = a in match t with Cic.Meta(n,l) -> (try deref subst (CicSubstitution.subst_meta l (snd (CicUtil.lookup_subst n subst))) with CicUtil.Subst_not_found _ -> t) | Cic.Appl(Cic.Meta(n,l)::args) -> (match deref subst (Cic.Meta(n,l)) with | Cic.Lambda _ as t -> deref subst (CicReduction.head_beta_reduce (Cic.Appl(t::args))) | r -> Cic.Appl(r::args)) | Cic.Appl(((Cic.Lambda _) as t)::args) -> deref subst (CicReduction.head_beta_reduce (Cic.Appl(t::args))) | t -> t ;; let deref subst t = let foo () = deref subst t in profiler_deref.HExtlib.profile foo () exception WrongShape;; let eta_reduce after_beta_expansion after_beta_expansion_body before_beta_expansion = try match before_beta_expansion,after_beta_expansion_body with Cic.Appl l, Cic.Appl l' -> let rec all_but_last check_last = function [] -> assert false | [Cic.Rel 1] -> [] | [_] -> if check_last then raise WrongShape else [] | he::tl -> he::(all_but_last check_last tl) in let all_but_last check_last l = match all_but_last check_last l with [] -> assert false | [he] -> he | l -> Cic.Appl l in let t = CicSubstitution.subst (Cic.Rel (-1)) (all_but_last true l') in let all_but_last = all_but_last false l in (* here we should test alpha-equivalence; however we know by construction that here alpha_equivalence is equivalent to = *) if t = all_but_last then all_but_last else after_beta_expansion | _,_ -> after_beta_expansion with WrongShape -> after_beta_expansion let rec beta_expand test_equality_only metasenv subst context t arg ugraph = let module S = CicSubstitution in let module C = Cic in let foo () = let rec aux metasenv subst n context t' ugraph = try let subst,metasenv,ugraph1 = fo_unif_subst test_equality_only subst context metasenv (CicSubstitution.lift n arg) t' ugraph in subst,metasenv,C.Rel (1 + n),ugraph1 with Uncertain _ | UnificationFailure _ -> match t' with | C.Rel m -> subst,metasenv, (if m <= n then C.Rel m else C.Rel (m+1)),ugraph | C.Var (uri,exp_named_subst) -> let subst,metasenv,exp_named_subst',ugraph1 = aux_exp_named_subst metasenv subst n context exp_named_subst ugraph in subst,metasenv,C.Var (uri,exp_named_subst'),ugraph1 | C.Meta (i,l) -> (* andrea: in general, beta_expand can create badly typed terms. This happens quite seldom in practice, UNLESS we iterate on the local context. For this reason, we renounce to iterate and just lift *) let l = List.map (function Some t -> Some (CicSubstitution.lift 1 t) | None -> None) l in subst, metasenv, C.Meta (i,l), ugraph | C.Sort _ | C.Implicit _ as t -> subst,metasenv,t,ugraph | C.Cast (te,ty) -> let subst,metasenv,te',ugraph1 = aux metasenv subst n context te ugraph in let subst,metasenv,ty',ugraph2 = aux metasenv subst n context ty ugraph1 in (* TASSI: sure this is in serial? *) subst,metasenv,(C.Cast (te', ty')),ugraph2 | C.Prod (nn,s,t) -> let subst,metasenv,s',ugraph1 = aux metasenv subst n context s ugraph in let subst,metasenv,t',ugraph2 = aux metasenv subst (n+1) ((Some (nn, C.Decl s))::context) t ugraph1 in (* TASSI: sure this is in serial? *) subst,metasenv,(C.Prod (nn, s', t')),ugraph2 | C.Lambda (nn,s,t) -> let subst,metasenv,s',ugraph1 = aux metasenv subst n context s ugraph in let subst,metasenv,t',ugraph2 = aux metasenv subst (n+1) ((Some (nn, C.Decl s))::context) t ugraph1 in (* TASSI: sure this is in serial? *) subst,metasenv,(C.Lambda (nn, s', t')),ugraph2 | C.LetIn (nn,s,t) -> let subst,metasenv,s',ugraph1 = aux metasenv subst n context s ugraph in let subst,metasenv,t',ugraph2 = aux metasenv subst (n+1) ((Some (nn, C.Def (s,None)))::context) t ugraph1 in (* TASSI: sure this is in serial? *) subst,metasenv,(C.LetIn (nn, s', t')),ugraph2 | C.Appl l -> let subst,metasenv,revl',ugraph1 = List.fold_left (fun (subst,metasenv,appl,ugraph) t -> let subst,metasenv,t',ugraph1 = aux metasenv subst n context t ugraph in subst,metasenv,(t'::appl),ugraph1 ) (subst,metasenv,[],ugraph) l in subst,metasenv,(C.Appl (List.rev revl')),ugraph1 | C.Const (uri,exp_named_subst) -> let subst,metasenv,exp_named_subst',ugraph1 = aux_exp_named_subst metasenv subst n context exp_named_subst ugraph in subst,metasenv,(C.Const (uri,exp_named_subst')),ugraph1 | C.MutInd (uri,i,exp_named_subst) -> let subst,metasenv,exp_named_subst',ugraph1 = aux_exp_named_subst metasenv subst n context exp_named_subst ugraph in subst,metasenv,(C.MutInd (uri,i,exp_named_subst')),ugraph1 | C.MutConstruct (uri,i,j,exp_named_subst) -> let subst,metasenv,exp_named_subst',ugraph1 = aux_exp_named_subst metasenv subst n context exp_named_subst ugraph in subst,metasenv,(C.MutConstruct (uri,i,j,exp_named_subst')),ugraph1 | C.MutCase (sp,i,outt,t,pl) -> let subst,metasenv,outt',ugraph1 = aux metasenv subst n context outt ugraph in let subst,metasenv,t',ugraph2 = aux metasenv subst n context t ugraph1 in let subst,metasenv,revpl',ugraph3 = List.fold_left (fun (subst,metasenv,pl,ugraph) t -> let subst,metasenv,t',ugraph1 = aux metasenv subst n context t ugraph in subst,metasenv,(t'::pl),ugraph1 ) (subst,metasenv,[],ugraph2) pl in subst,metasenv,(C.MutCase (sp,i,outt', t', List.rev revpl')),ugraph3 (* TASSI: not sure this is serial *) | C.Fix (i,fl) -> (*CSC: not implemented let tylen = List.length fl in let substitutedfl = List.map (fun (name,i,ty,bo) -> (name, i, aux n ty, aux (n+tylen) bo)) fl in C.Fix (i, substitutedfl) *) subst,metasenv,(CicSubstitution.lift 1 t' ),ugraph | C.CoFix (i,fl) -> (*CSC: not implemented let tylen = List.length fl in let substitutedfl = List.map (fun (name,ty,bo) -> (name, aux n ty, aux (n+tylen) bo)) fl in C.CoFix (i, substitutedfl) *) subst,metasenv,(CicSubstitution.lift 1 t'), ugraph and aux_exp_named_subst metasenv subst n context ens ugraph = List.fold_right (fun (uri,t) (subst,metasenv,l,ugraph) -> let subst,metasenv,t',ugraph1 = aux metasenv subst n context t ugraph in subst,metasenv,((uri,t')::l),ugraph1) ens (subst,metasenv,[],ugraph) in let argty,ugraph1 = type_of_aux' metasenv subst context arg ugraph in let fresh_name = FreshNamesGenerator.mk_fresh_name ~subst metasenv context (Cic.Name "Hbeta") ~typ:argty in let subst,metasenv,t',ugraph2 = aux metasenv subst 0 context t ugraph1 in let t'' = eta_reduce (C.Lambda (fresh_name,argty,t')) t' t in subst, metasenv, t'', ugraph2 in profiler_beta_expand.HExtlib.profile foo () and beta_expand_many test_equality_only metasenv subst context t args ugraph = let subst,metasenv,hd,ugraph = List.fold_right (fun arg (subst,metasenv,t,ugraph) -> let subst,metasenv,t,ugraph1 = beta_expand test_equality_only metasenv subst context t arg ugraph in subst,metasenv,t,ugraph1 ) args (subst,metasenv,t,ugraph) in subst,metasenv,hd,ugraph (* NUOVA UNIFICAZIONE *) (* A substitution is a (int * Cic.term) list that associates a metavariable i with its body. A metaenv is a (int * Cic.term) list that associate a metavariable i with is type. fo_unif_new takes a metasenv, a context, two terms t1 and t2 and gives back a new substitution which is _NOT_ unwinded. It must be unwinded before applying it. *) and fo_unif_subst test_equality_only subst context metasenv t1 t2 ugraph = let module C = Cic in let module R = CicReduction in let module S = CicSubstitution in let t1 = deref subst t1 in let t2 = deref subst t2 in let b,ugraph = let foo () = R.are_convertible ~subst ~metasenv context t1 t2 ugraph in profiler_are_convertible.HExtlib.profile foo () in if b then subst, metasenv, ugraph else match (t1, t2) with | (C.Meta (n,ln), C.Meta (m,lm)) when n=m -> let _,subst,metasenv,ugraph1 = (try List.fold_left2 (fun (j,subst,metasenv,ugraph) t1 t2 -> match t1,t2 with None,_ | _,None -> j+1,subst,metasenv,ugraph | Some t1', Some t2' -> (* First possibility: restriction *) (* Second possibility: unification *) (* Third possibility: convertibility *) let b, ugraph1 = R.are_convertible ~subst ~metasenv context t1' t2' ugraph in if b then j+1,subst,metasenv, ugraph1 else (try let subst,metasenv,ugraph2 = fo_unif_subst test_equality_only subst context metasenv t1' t2' ugraph in j+1,subst,metasenv,ugraph2 with Uncertain _ | UnificationFailure _ -> debug_print (lazy ("restringo Meta n." ^ (string_of_int n) ^ "on variable n." ^ (string_of_int j))); let metasenv, subst = CicMetaSubst.restrict subst [(n,j)] metasenv in j+1,subst,metasenv,ugraph1) ) (1,subst,metasenv,ugraph) ln lm with Exit -> raise (UnificationFailure (lazy "1")) (* (sprintf "Error trying to unify %s with %s: the algorithm tried to check whether the two substitutions are convertible; if they are not, it tried to unify the two substitutions. No restriction was attempted." (CicMetaSubst.ppterm subst t1) (CicMetaSubst.ppterm subst t2))) *) | Invalid_argument _ -> raise (UnificationFailure (lazy "2"))) (* (sprintf "Error trying to unify %s with %s: the lengths of the two local contexts do not match." (CicMetaSubst.ppterm subst t1) (CicMetaSubst.ppterm subst t2)))) *) in subst,metasenv,ugraph1 | (C.Meta (n,_), C.Meta (m,_)) when n>m -> fo_unif_subst test_equality_only subst context metasenv t2 t1 ugraph | (C.Meta (n,l), t) | (t, C.Meta (n,l)) -> let swap = match t1,t2 with C.Meta (n,_), C.Meta (m,_) when n < m -> false | _, C.Meta _ -> false | _,_ -> true in let lower = fun x y -> if swap then y else x in let upper = fun x y -> if swap then x else y in let fo_unif_subst_ordered test_equality_only subst context metasenv m1 m2 ugraph = fo_unif_subst test_equality_only subst context metasenv (lower m1 m2) (upper m1 m2) ugraph in begin let subst,metasenv,ugraph1 = let (_,_,meta_type) = CicUtil.lookup_meta n metasenv in (try let tyt,ugraph1 = type_of_aux' metasenv subst context t ugraph in fo_unif_subst test_equality_only subst context metasenv tyt (S.subst_meta l meta_type) ugraph1 with UnificationFailure _ as e -> raise e | Uncertain msg -> raise (UnificationFailure msg) | AssertFailure _ -> debug_print (lazy "siamo allo huge hack"); (* TODO huge hack!!!! * we keep on unifying/refining in the hope that * the problem will be eventually solved. * In the meantime we're breaking a big invariant: * the terms that we are unifying are no longer well * typed in the current context (in the worst case * we could even diverge) *) (subst, metasenv,ugraph)) in let t',metasenv,subst = try CicMetaSubst.delift n subst context metasenv l t with (CicMetaSubst.MetaSubstFailure msg)-> raise (UnificationFailure msg) | (CicMetaSubst.Uncertain msg) -> raise (Uncertain msg) in let t'',ugraph2 = match t' with C.Sort (C.Type u) when not test_equality_only -> let u' = CicUniv.fresh () in let s = C.Sort (C.Type u') in let ugraph2 = CicUniv.add_ge (upper u u') (lower u u') ugraph1 in s,ugraph2 | _ -> t',ugraph1 in (* Unifying the types may have already instantiated n. Let's check *) try let (_, oldt,_) = CicUtil.lookup_subst n subst in let lifted_oldt = S.subst_meta l oldt in fo_unif_subst_ordered test_equality_only subst context metasenv t lifted_oldt ugraph2 with CicUtil.Subst_not_found _ -> let (_, context, ty) = CicUtil.lookup_meta n metasenv in let subst = (n, (context, t'',ty)) :: subst in let metasenv = List.filter (fun (m,_,_) -> not (n = m)) metasenv in subst, metasenv, ugraph2 end | (C.Var (uri1,exp_named_subst1),C.Var (uri2,exp_named_subst2)) | (C.Const (uri1,exp_named_subst1),C.Const (uri2,exp_named_subst2)) -> if UriManager.eq uri1 uri2 then fo_unif_subst_exp_named_subst test_equality_only subst context metasenv exp_named_subst1 exp_named_subst2 ugraph else raise (UnificationFailure (lazy (sprintf "Can't unify %s with %s due to different constants" (CicMetaSubst.ppterm subst t1) (CicMetaSubst.ppterm subst t2)))) | C.MutInd (uri1,i1,exp_named_subst1),C.MutInd (uri2,i2,exp_named_subst2) -> if UriManager.eq uri1 uri2 && i1 = i2 then fo_unif_subst_exp_named_subst test_equality_only subst context metasenv exp_named_subst1 exp_named_subst2 ugraph else raise (UnificationFailure (lazy "4")) (* (sprintf "Can't unify %s with %s due to different inductive principles" (CicMetaSubst.ppterm subst t1) (CicMetaSubst.ppterm subst t2))) *) | C.MutConstruct (uri1,i1,j1,exp_named_subst1), C.MutConstruct (uri2,i2,j2,exp_named_subst2) -> if UriManager.eq uri1 uri2 && i1 = i2 && j1 = j2 then fo_unif_subst_exp_named_subst test_equality_only subst context metasenv exp_named_subst1 exp_named_subst2 ugraph else raise (UnificationFailure (lazy "5")) (* (sprintf "Can't unify %s with %s due to different inductive constructors" (CicMetaSubst.ppterm subst t1) (CicMetaSubst.ppterm subst t2))) *) | (C.Implicit _, _) | (_, C.Implicit _) -> assert false | (C.Cast (te,ty), t2) -> fo_unif_subst test_equality_only subst context metasenv te t2 ugraph | (t1, C.Cast (te,ty)) -> fo_unif_subst test_equality_only subst context metasenv t1 te ugraph | (C.Prod (n1,s1,t1), C.Prod (_,s2,t2)) -> let subst',metasenv',ugraph1 = fo_unif_subst true subst context metasenv s1 s2 ugraph in fo_unif_subst test_equality_only subst' ((Some (n1,(C.Decl s1)))::context) metasenv' t1 t2 ugraph1 | (C.Lambda (n1,s1,t1), C.Lambda (_,s2,t2)) -> let subst',metasenv',ugraph1 = fo_unif_subst test_equality_only subst context metasenv s1 s2 ugraph in fo_unif_subst test_equality_only subst' ((Some (n1,(C.Decl s1)))::context) metasenv' t1 t2 ugraph1 | (C.LetIn (_,s1,t1), t2) | (t2, C.LetIn (_,s1,t1)) -> fo_unif_subst test_equality_only subst context metasenv t2 (S.subst s1 t1) ugraph | (C.Appl l1, C.Appl l2) -> (* andrea: this case should be probably rewritten in the spirit of deref *) (match l1,l2 with | C.Meta (i,_)::args1, C.Meta (j,_)::args2 when i = j -> (try List.fold_left2 (fun (subst,metasenv,ugraph) t1 t2 -> fo_unif_subst test_equality_only subst context metasenv t1 t2 ugraph) (subst,metasenv,ugraph) l1 l2 with (Invalid_argument msg) -> raise (UnificationFailure (lazy msg))) | C.Meta (i,l)::args, _ when not(exists_a_meta args) -> (* we verify that none of the args is a Meta, since beta expanding with respoect to a metavariable makes no sense *) (* (try let (_,t,_) = CicUtil.lookup_subst i subst in let lifted = S.subst_meta l t in let reduced = CicReduction.head_beta_reduce (Cic.Appl (lifted::args)) in fo_unif_subst test_equality_only subst context metasenv reduced t2 ugraph with CicUtil.Subst_not_found _ -> *) let subst,metasenv,beta_expanded,ugraph1 = beta_expand_many test_equality_only metasenv subst context t2 args ugraph in fo_unif_subst test_equality_only subst context metasenv (C.Meta (i,l)) beta_expanded ugraph1 | _, C.Meta (i,l)::args when not(exists_a_meta args) -> (* (try let (_,t,_) = CicUtil.lookup_subst i subst in let lifted = S.subst_meta l t in let reduced = CicReduction.head_beta_reduce (Cic.Appl (lifted::args)) in fo_unif_subst test_equality_only subst context metasenv t1 reduced ugraph with CicUtil.Subst_not_found _ -> *) let subst,metasenv,beta_expanded,ugraph1 = beta_expand_many test_equality_only metasenv subst context t1 args ugraph in fo_unif_subst test_equality_only subst context metasenv (C.Meta (i,l)) beta_expanded ugraph1 | _,_ -> let lr1 = List.rev l1 in let lr2 = List.rev l2 in let rec fo_unif_l test_equality_only subst metasenv (l1,l2) ugraph = match (l1,l2) with [],_ | _,[] -> assert false | ([h1],[h2]) -> fo_unif_subst test_equality_only subst context metasenv h1 h2 ugraph | ([h],l) | (l,[h]) -> fo_unif_subst test_equality_only subst context metasenv h (C.Appl (List.rev l)) ugraph | ((h1::l1),(h2::l2)) -> let subst', metasenv',ugraph1 = fo_unif_subst test_equality_only subst context metasenv h1 h2 ugraph in fo_unif_l test_equality_only subst' metasenv' (l1,l2) ugraph1 in fo_unif_l test_equality_only subst metasenv (lr1, lr2) ugraph) | (C.MutCase (_,_,outt1,t1',pl1), C.MutCase (_,_,outt2,t2',pl2))-> let subst', metasenv',ugraph1 = fo_unif_subst test_equality_only subst context metasenv outt1 outt2 ugraph in let subst'',metasenv'',ugraph2 = fo_unif_subst test_equality_only subst' context metasenv' t1' t2' ugraph1 in (try List.fold_left2 (fun (subst,metasenv,ugraph) t1 t2 -> fo_unif_subst test_equality_only subst context metasenv t1 t2 ugraph ) (subst'',metasenv'',ugraph2) pl1 pl2 with Invalid_argument _ -> raise (UnificationFailure (lazy "6.1"))) (* (sprintf "Error trying to unify %s with %s: the number of branches is not the same." (CicMetaSubst.ppterm subst t1) (CicMetaSubst.ppterm subst t2)))) *) | (C.Rel _, _) | (_, C.Rel _) -> if t1 = t2 then subst, metasenv,ugraph else raise (UnificationFailure (lazy (sprintf "Can't unify %s with %s because they are not convertible" (CicMetaSubst.ppterm subst t1) (CicMetaSubst.ppterm subst t2)))) | (C.Appl (C.Meta(i,l)::args),t2) when not(exists_a_meta args) -> let subst,metasenv,beta_expanded,ugraph1 = beta_expand_many test_equality_only metasenv subst context t2 args ugraph in fo_unif_subst test_equality_only subst context metasenv (C.Meta (i,l)) beta_expanded ugraph1 | (t1,C.Appl (C.Meta(i,l)::args)) when not(exists_a_meta args) -> let subst,metasenv,beta_expanded,ugraph1 = beta_expand_many test_equality_only metasenv subst context t1 args ugraph in fo_unif_subst test_equality_only subst context metasenv beta_expanded (C.Meta (i,l)) ugraph1 | (C.Sort _ ,_) | (_, C.Sort _) | (C.Const _, _) | (_, C.Const _) | (C.MutInd _, _) | (_, C.MutInd _) | (C.MutConstruct _, _) | (_, C.MutConstruct _) | (C.Fix _, _) | (_, C.Fix _) | (C.CoFix _, _) | (_, C.CoFix _) -> if t1 = t2 then subst, metasenv, ugraph else let b,ugraph1 = R.are_convertible ~subst ~metasenv context t1 t2 ugraph in if b then subst, metasenv, ugraph1 else raise (UnificationFailure (lazy (sprintf "Can't unify %s with %s because they are not convertible" (CicMetaSubst.ppterm subst t1) (CicMetaSubst.ppterm subst t2)))) | (C.Prod _, t2) -> let t2' = R.whd ~subst context t2 in (match t2' with C.Prod _ -> fo_unif_subst test_equality_only subst context metasenv t1 t2' ugraph | _ -> raise (UnificationFailure (lazy "8"))) | (t1, C.Prod _) -> let t1' = R.whd ~subst context t1 in (match t1' with C.Prod _ -> fo_unif_subst test_equality_only subst context metasenv t1' t2 ugraph | _ -> (* raise (UnificationFailure "9")) *) raise (UnificationFailure (lazy (sprintf "Can't unify %s with %s because they are not convertible" (CicMetaSubst.ppterm subst t1) (CicMetaSubst.ppterm subst t2))))) | (_,_) -> raise (UnificationFailure (lazy "10")) (* (sprintf "Can't unify %s with %s because they are not convertible" (CicMetaSubst.ppterm subst t1) (CicMetaSubst.ppterm subst t2))) *) and fo_unif_subst_exp_named_subst test_equality_only subst context metasenv exp_named_subst1 exp_named_subst2 ugraph = try List.fold_left2 (fun (subst,metasenv,ugraph) (uri1,t1) (uri2,t2) -> assert (uri1=uri2) ; fo_unif_subst test_equality_only subst context metasenv t1 t2 ugraph ) (subst,metasenv,ugraph) exp_named_subst1 exp_named_subst2 with Invalid_argument _ -> let print_ens ens = String.concat " ; " (List.map (fun (uri,t) -> UriManager.string_of_uri uri ^ " := " ^ (CicMetaSubst.ppterm subst t) ) ens) in raise (UnificationFailure (lazy (sprintf "Error trying to unify the two explicit named substitutions (local contexts) %s and %s: their lengths is different." (print_ens exp_named_subst1) (print_ens exp_named_subst2)))) (* A substitution is a (int * Cic.term) list that associates a *) (* metavariable i with its body. *) (* metasenv is of type Cic.metasenv *) (* fo_unif takes a metasenv, a context, two terms t1 and t2 and gives back *) (* a new substitution which is already unwinded and ready to be applied and *) (* a new metasenv in which some hypothesis in the contexts of the *) (* metavariables may have been restricted. *) let fo_unif metasenv context t1 t2 ugraph = fo_unif_subst false [] context metasenv t1 t2 ugraph ;; let enrich_msg msg subst context metasenv t1 t2 ugraph = lazy ( if verbose then sprintf "[Verbose] Unification error unifying %s of type %s with %s of type %s in context\n%s\nand metasenv\n%s\nand substitution\n%s\nbecause %s" (CicMetaSubst.ppterm subst t1) (try let ty_t1,_ = type_of_aux' metasenv subst context t1 ugraph in CicPp.ppterm ty_t1 with | UnificationFailure s | Uncertain s | AssertFailure s -> sprintf "MALFORMED(t1): \n%s\n" (Lazy.force s)) (CicMetaSubst.ppterm subst t2) (try let ty_t2,_ = type_of_aux' metasenv subst context t2 ugraph in CicPp.ppterm ty_t2 with | UnificationFailure s | Uncertain s | AssertFailure s -> sprintf "MALFORMED(t2): \n%s\n" (Lazy.force s)) (CicMetaSubst.ppcontext subst context) (CicMetaSubst.ppmetasenv subst metasenv) (CicMetaSubst.ppsubst subst) (Lazy.force msg) else sprintf "Unification error unifying %s of type %s with %s of type %s in context\n%s\nand metasenv\n%s\nbecause %s" (CicMetaSubst.ppterm_in_context subst t1 context) (try let ty_t1,_ = type_of_aux' metasenv subst context t1 ugraph in CicMetaSubst.ppterm_in_context subst ty_t1 context with | UnificationFailure s | Uncertain s | AssertFailure s -> sprintf "MALFORMED(t1): \n%s\n" (Lazy.force s)) (CicMetaSubst.ppterm_in_context subst t2 context) (try let ty_t2,_ = type_of_aux' metasenv subst context t2 ugraph in CicMetaSubst.ppterm_in_context subst ty_t2 context with | UnificationFailure s | Uncertain s | AssertFailure s -> sprintf "MALFORMED(t2): \n%s\n" (Lazy.force s)) (CicMetaSubst.ppcontext subst context) (CicMetaSubst.ppmetasenv subst metasenv) (Lazy.force msg) ) let fo_unif_subst subst context metasenv t1 t2 ugraph = try fo_unif_subst false subst context metasenv t1 t2 ugraph with | AssertFailure msg -> raise (AssertFailure (enrich_msg msg subst context metasenv t1 t2 ugraph)) | UnificationFailure msg -> raise (UnificationFailure (enrich_msg msg subst context metasenv t1 t2 ugraph)) ;;