(* Copyright (C) 2000, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://cs.unibo.it/helm/. *) exception UnificationFailed;; exception Free;; exception OccurCheck;; type substitution = (int * Cic.term) list (*CSC: Hhhmmm. Forse dovremmo spostarla in CicSubstitution dove si trova la *) (*CSC: lift? O creare una proofEngineSubstitution? *) (* the function delift n m un-lifts a lambda term m of n level of abstractions. It returns an exception Free if M contains a free variable in the range 1--n *) let delift n = let rec deliftaux k = let module C = Cic in function C.Rel m -> if m < k then C.Rel m else if m < k+n then raise Free else C.Rel (m - n) | C.Var _ as t -> t | C.Meta _ as t -> t | C.Sort _ as t -> t | C.Implicit as t -> t | C.Cast (te,ty) -> C.Cast (deliftaux k te, deliftaux k ty) | C.Prod (n,s,t) -> C.Prod (n, deliftaux k s, deliftaux (k+1) t) | C.Lambda (n,s,t) -> C.Lambda (n, deliftaux k s, deliftaux (k+1) t) | C.LetIn (n,s,t) -> C.LetIn (n, deliftaux k s, deliftaux (k+1) t) | C.Appl l -> C.Appl (List.map (deliftaux k) l) | C.Const _ as t -> t | C.Abst _ as t -> t | C.MutInd _ as t -> t | C.MutConstruct _ as t -> t | C.MutCase (sp,cookingsno,i,outty,t,pl) -> C.MutCase (sp, cookingsno, i, deliftaux k outty, deliftaux k t, List.map (deliftaux k) pl) | C.Fix (i, fl) -> let len = List.length fl in let liftedfl = List.map (fun (name, i, ty, bo) -> (name, i, deliftaux k ty, deliftaux (k+len) bo)) fl in C.Fix (i, liftedfl) | C.CoFix (i, fl) -> let len = List.length fl in let liftedfl = List.map (fun (name, ty, bo) -> (name, deliftaux k ty, deliftaux (k+len) bo)) fl in C.CoFix (i, liftedfl) in if n = 0 then (function t -> t) else deliftaux 1 ;; (* NUOVA UNIFICAZIONE *) (* A substitution is a (int * Cic.term) list that associates a metavariable i with its body. A metaenv is a (int * Cic.term) list that associate a metavariable i with is type. fo_unif_new takes a metasenv, a context, two terms t1 and t2 and gives back a new substitution which is _NOT_ unwinded. It must be unwinded before applying it. *) let fo_unif_new metasenv context t1 t2 = let module C = Cic in let module R = CicReduction in let module S = CicSubstitution in let rec fo_unif_aux subst k t1 t2 = match (t1, t2) with (C.Meta n, C.Meta m) -> if n == m then subst else let subst'= let tn = try List.assoc n subst with Not_found -> C.Meta n in let tm = try List.assoc m subst with Not_found -> C.Meta m in (match (tn, tm) with (C.Meta n, C.Meta m) -> if n==m then subst else if n (n, tm)::subst | (tn, C.Meta m) -> (m, tn)::subst | (tn,tm) -> fo_unif_aux subst 0 tn tm) in (* unify types first *) let tyn = List.assoc n metasenv in let tym = List.assoc m metasenv in fo_unif_aux subst' 0 tyn tym | (C.Meta n, t) | (t, C.Meta n) -> (* unify types first *) let t' = delift k t in let subst' = (try fo_unif_aux subst 0 (List.assoc n subst) t' with Not_found -> (n, t')::subst) in let tyn = List.assoc n metasenv in let tyt = CicTypeChecker.type_of_aux' metasenv context t' in fo_unif_aux subst' 0 tyn tyt | (C.Rel _, _) | (_, C.Rel _) | (C.Var _, _) | (_, C.Var _) | (C.Sort _ ,_) | (_, C.Sort _) | (C.Implicit, _) | (_, C.Implicit) -> if R.are_convertible t1 t2 then subst else raise UnificationFailed | (C.Cast (te,ty), t2) -> fo_unif_aux subst k te t2 | (t1, C.Cast (te,ty)) -> fo_unif_aux subst k t1 te | (C.Prod (_,s1,t1), C.Prod (_,s2,t2)) -> let subst' = fo_unif_aux subst k s1 s2 in fo_unif_aux subst' (k+1) t1 t2 | (C.Lambda (_,s1,t1), C.Lambda (_,s2,t2)) -> let subst' = fo_unif_aux subst k s1 s2 in fo_unif_aux subst' (k+1) t1 t2 | (C.LetIn (_,s1,t1), t2) -> fo_unif_aux subst k (S.subst s1 t1) t2 | (t1, C.LetIn (_,s2,t2)) -> fo_unif_aux subst k t1 (S.subst s2 t2) | (C.Appl l1, C.Appl l2) -> let lr1 = List.rev l1 in let lr2 = List.rev l2 in let rec fo_unif_l subst = function [],_ | _,[] -> assert false | ([h1],[h2]) -> fo_unif_aux subst k h1 h2 | ([h],l) | (l,[h]) -> fo_unif_aux subst k h (C.Appl l) | ((h1::l1),(h2::l2)) -> let subst' = fo_unif_aux subst k h1 h2 in fo_unif_l subst' (l1,l2) in fo_unif_l subst (lr1, lr2) | (C.Const _, _) | (_, C.Const _) | (C.Abst _, _) | (_, C.Abst _) | (C.MutInd _, _) | (_, C.MutInd _) | (C.MutConstruct _, _) | (_, C.MutConstruct _) -> if R.are_convertible t1 t2 then subst else raise UnificationFailed | (C.MutCase (_,_,_,outt1,t1,pl1), C.MutCase (_,_,_,outt2,t2,pl2))-> let subst' = fo_unif_aux subst k outt1 outt2 in let subst'' = fo_unif_aux subst' k t1 t2 in List.fold_left2 (function subst -> fo_unif_aux subst k) subst'' pl1 pl2 | (C.Fix _, _) | (_, C.Fix _) | (C.CoFix _, _) | (_, C.CoFix _) -> if R.are_convertible t1 t2 then subst else raise UnificationFailed | (_,_) -> raise UnificationFailed in fo_unif_aux [] 0 t1 t2;; (* unwind mgu mark m applies mgu to the term m; mark is an array of integers mark.(n) = 0 if the term has not been unwinded, is 2 if it is under uwinding, and is 1 if it has been succesfully unwinded. Meeting the value 2 during the computation is an error: occur-check *) let unwind subst unwinded t = let unwinded = ref unwinded in let frozen = ref [] in let rec um_aux k = let module C = Cic in let module S = CicSubstitution in function C.Rel _ as t -> t | C.Var _ as t -> t | C.Meta i as t ->(try S.lift k (List.assoc i !unwinded) with Not_found -> if List.mem i !frozen then raise OccurCheck else let saved_frozen = !frozen in frozen := i::!frozen ; let res = try let t = List.assoc i subst in let t' = um_aux 0 t in unwinded := (i,t')::!unwinded ; S.lift k t' with Not_found -> (* not constrained variable, i.e. free in subst*) C.Meta i in frozen := saved_frozen ; res ) | C.Sort _ as t -> t | C.Implicit as t -> t | C.Cast (te,ty) -> C.Cast (um_aux k te, um_aux k ty) | C.Prod (n,s,t) -> C.Prod (n, um_aux k s, um_aux (k+1) t) | C.Lambda (n,s,t) -> C.Lambda (n, um_aux k s, um_aux (k+1) t) | C.LetIn (n,s,t) -> C.LetIn (n, um_aux k s, um_aux (k+1) t) | C.Appl (he::tl) -> let tl' = List.map (um_aux k) tl in begin match um_aux k he with C.Appl l -> C.Appl (l@tl') | _ as he' -> C.Appl (he'::tl') end | C.Appl _ -> assert false | C.Const _ as t -> t | C.Abst _ as t -> t | C.MutInd _ as t -> t | C.MutConstruct _ as t -> t | C.MutCase (sp,cookingsno,i,outty,t,pl) -> C.MutCase (sp, cookingsno, i, um_aux k outty, um_aux k t, List.map (um_aux k) pl) | C.Fix (i, fl) -> let len = List.length fl in let liftedfl = List.map (fun (name, i, ty, bo) -> (name, i, um_aux k ty, um_aux (k+len) bo)) fl in C.Fix (i, liftedfl) | C.CoFix (i, fl) -> let len = List.length fl in let liftedfl = List.map (fun (name, ty, bo) -> (name, um_aux k ty, um_aux (k+len) bo)) fl in C.CoFix (i, liftedfl) in um_aux 0 t,!unwinded ;; (* apply_subst_reducing subst (Some (mtr,reductions_no)) t *) (* performs as (apply_subst subst t) until it finds an application of *) (* (META [meta_to_reduce]) that, once unwinding is performed, creates *) (* a new beta-redex; in this case up to [reductions_no] consecutive *) (* beta-reductions are performed. *) (* Hint: this function is usually called when [reductions_no] *) (* eta-expansions have been performed and the head of the new *) (* application has been unified with (META [meta_to_reduce]): *) (* during the unwinding the eta-expansions are undone. *) let apply_subst_reducing subst meta_to_reduce t = let unwinded = ref subst in let rec um_aux k = let module C = Cic in let module S = CicSubstitution in function C.Rel _ as t -> t | C.Var _ as t -> t | C.Meta i as t -> (try S.lift k (List.assoc i !unwinded) with Not_found -> C.Meta i) | C.Sort _ as t -> t | C.Implicit as t -> t | C.Cast (te,ty) -> C.Cast (um_aux k te, um_aux k ty) | C.Prod (n,s,t) -> C.Prod (n, um_aux k s, um_aux (k+1) t) | C.Lambda (n,s,t) -> C.Lambda (n, um_aux k s, um_aux (k+1) t) | C.LetIn (n,s,t) -> C.LetIn (n, um_aux k s, um_aux (k+1) t) | C.Appl (he::tl) -> let tl' = List.map (um_aux k) tl in let t' = match um_aux k he with C.Appl l -> C.Appl (l@tl') | _ as he' -> C.Appl (he'::tl') in begin match meta_to_reduce with Some (mtr,reductions_no) when he = C.Meta mtr -> let rec beta_reduce = function (n,(C.Appl (C.Lambda (_,_,t)::he'::tl'))) when n > 0 -> let he'' = CicSubstitution.subst he' t in if tl' = [] then he'' else beta_reduce (n-1,C.Appl(he''::tl')) | (_,t) -> t in beta_reduce (reductions_no,t') | _ -> t' end | C.Appl _ -> assert false | C.Const _ as t -> t | C.Abst _ as t -> t | C.MutInd _ as t -> t | C.MutConstruct _ as t -> t | C.MutCase (sp,cookingsno,i,outty,t,pl) -> C.MutCase (sp, cookingsno, i, um_aux k outty, um_aux k t, List.map (um_aux k) pl) | C.Fix (i, fl) -> let len = List.length fl in let liftedfl = List.map (fun (name, i, ty, bo) -> (name, i, um_aux k ty, um_aux (k+len) bo)) fl in C.Fix (i, liftedfl) | C.CoFix (i, fl) -> let len = List.length fl in let liftedfl = List.map (fun (name, ty, bo) -> (name, um_aux k ty, um_aux (k+len) bo)) fl in C.CoFix (i, liftedfl) in um_aux 0 t ;; (* UNWIND THE MGU INSIDE THE MGU *) let unwind_subst subst = List.fold_left (fun unwinded (i,_) -> snd (unwind subst unwinded (Cic.Meta i))) [] subst ;; let apply_subst subst t = fst (unwind [] subst t) ;; (* A substitution is a (int * Cic.term) list that associates a metavariable i with its body. A metaenv is a (int * Cic.term) list that associate a metavariable i with is type. fo_unif takes a metasenv, a context, two terms t1 and t2 and gives back a new substitution which is already unwinded and ready to be applied. *) let fo_unif metasenv context t1 t2 = let subst_to_unwind = fo_unif_new metasenv context t1 t2 in unwind_subst subst_to_unwind ;;