(* Copyright (C) 2004, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://cs.unibo.it/helm/. *) (* mk_fresh_name context name typ *) (* returns an identifier which is fresh in the context *) (* and that resembles [name] as much as possible. *) (* [typ] will be the type of the variable *) let mk_fresh_name metasenv context name ~typ = let module C = Cic in let basename = match name with C.Anonymous -> (*CSC: great space for improvements here *) (try (match CicTypeChecker.type_of_aux' metasenv context typ with C.Sort C.Prop | C.Sort C.CProp -> "H" | C.Sort C.Set -> "x" | _ -> "H" ) with CicTypeChecker.TypeCheckerFailure _ -> "H" ) | C.Name name -> Str.global_replace (Str.regexp "[0-9]*$") "" name in let already_used name = List.exists (function Some (C.Name n,_) -> n=name | _ -> false) context in if not (already_used basename) then C.Name basename else let rec try_next n = let name' = basename ^ string_of_int n in if already_used name' then try_next (n+1) else C.Name name' in try_next 1 ;; (* clean_dummy_dependent_types term *) (* returns a copy of [term] where every dummy dependent product *) (* have been replaced with a non-dependent product and where *) (* dummy let-ins have been removed. *) let clean_dummy_dependent_types t = let module C = Cic in let rec aux k = function C.Rel m as t -> t,[k - m] | C.Var (uri,exp_named_subst) -> let exp_named_subst',rels = List.fold_right (fun (uri,t) (exp_named_subst,rels) -> let t',rels' = aux k t in (uri,t')::exp_named_subst, rels' @ rels ) exp_named_subst ([],[]) in C.Var (uri,exp_named_subst'),rels | C.Meta (i,l) -> let l',rels = List.fold_right (fun t (l,rels) -> let t',rels' = match t with None -> None,[] | Some t -> let t',rels' = aux k t in Some t', rels' in t'::l, rels' @ rels ) l ([],[]) in C.Meta(i,l'),rels | C.Sort _ as t -> t,[] | C.Implicit _ as t -> t,[] | C.Cast (te,ty) -> let te',rels1 = aux k te in let ty',rels2 = aux k ty in C.Cast (te', ty'), rels1@rels2 | C.Prod (n,s,t) -> let s',rels1 = aux k s in let t',rels2 = aux (k+1) t in let n' = match n with C.Anonymous -> if List.mem k rels2 then ( prerr_endline "If this happens often, we can do something about it (i.e. we can generate a new fresh name; problem: we need the metasenv and context ;-(. Alternative solution: mk_implicit does not generate entries for the elements in the context that have no name" ; C.Anonymous ) else C.Anonymous | C.Name _ as n -> if List.mem k rels2 then n else C.Anonymous in C.Prod (n', s', t'), rels1@rels2 | C.Lambda (n,s,t) -> let s',rels1 = aux k s in let t',rels2 = aux (k+1) t in C.Lambda (n, s', t'), rels1@rels2 | C.LetIn (n,s,t) -> let s',rels1 = aux k s in let t',rels2 = aux (k+1) t in let rels = rels1 @ rels2 in if List.mem k rels2 then C.LetIn (n, s', t'), rels else (* (C.Rel 1) is just a dummy term; any term would fit *) CicSubstitution.subst (C.Rel 1) t', rels | C.Appl l -> let l',rels = List.fold_right (fun t (exp_named_subst,rels) -> let t',rels' = aux k t in t'::exp_named_subst, rels' @ rels ) l ([],[]) in C.Appl l', rels | C.Const (uri,exp_named_subst) -> let exp_named_subst',rels = List.fold_right (fun (uri,t) (exp_named_subst,rels) -> let t',rels' = aux k t in (uri,t')::exp_named_subst, rels' @ rels ) exp_named_subst ([],[]) in C.Const (uri,exp_named_subst'),rels | C.MutInd (uri,tyno,exp_named_subst) -> let exp_named_subst',rels = List.fold_right (fun (uri,t) (exp_named_subst,rels) -> let t',rels' = aux k t in (uri,t')::exp_named_subst, rels' @ rels ) exp_named_subst ([],[]) in C.MutInd (uri,tyno,exp_named_subst'),rels | C.MutConstruct (uri,tyno,consno,exp_named_subst) -> let exp_named_subst',rels = List.fold_right (fun (uri,t) (exp_named_subst,rels) -> let t',rels' = aux k t in (uri,t')::exp_named_subst, rels' @ rels ) exp_named_subst ([],[]) in C.MutConstruct (uri,tyno,consno,exp_named_subst'),rels | C.MutCase (sp,i,outty,t,pl) -> let outty',rels1 = aux k outty in let t',rels2 = aux k t in let pl',rels3 = List.fold_right (fun t (exp_named_subst,rels) -> let t',rels' = aux k t in t'::exp_named_subst, rels' @ rels ) pl ([],[]) in C.MutCase (sp, i, outty', t', pl'), rels1 @ rels2 @rels3 | C.Fix (i, fl) -> let len = List.length fl in let fl',rels = List.fold_right (fun (name,i,ty,bo) (fl,rels) -> let ty',rels1 = aux k ty in let bo',rels2 = aux (k + len) bo in (name,i,ty',bo')::fl, rels1 @ rels2 @ rels ) fl ([],[]) in C.Fix (i, fl'),rels | C.CoFix (i, fl) -> let len = List.length fl in let fl',rels = List.fold_right (fun (name,ty,bo) (fl,rels) -> let ty',rels1 = aux k ty in let bo',rels2 = aux (k + len) bo in (name,ty',bo')::fl, rels1 @ rels2 @ rels ) fl ([],[]) in C.CoFix (i, fl'),rels in fst (aux 0 t) ;;