(* Copyright (C) 2004, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://helm.cs.unibo.it/ *) open Printf let critical_value = 7 let just_factor = 4 module StringSet = Set.Make (String) module SetSet = Set.Make (StringSet) type term_signature = (string * string list) option * StringSet.t type cardinality_condition = | Eq of int | Gt of int | Lt of int type rating_criterion = [ `Hits (** order by number of hits, most used objects first *) ] let tbln n = "table" ^ string_of_int n (* let add_depth_constr depth_opt cur_tbl where = match depth_opt with | None -> where | Some depth -> (sprintf "%s.h_depth = %d" cur_tbl depth) :: where *) let mk_positions positions cur_tbl = "(" ^ String.concat " or " (List.map (fun pos -> let pos_str = MetadataPp.pp_position_tag pos in match pos with | `InBody | `InConclusion | `InHypothesis | `MainConclusion None | `MainHypothesis None -> sprintf "%s.h_position = \"%s\"" cur_tbl pos_str | `MainConclusion (Some d) | `MainHypothesis (Some d) -> sprintf "(%s.h_position = \"%s\" and %s.h_depth = %d)" cur_tbl pos_str cur_tbl d) (positions :> MetadataTypes.position list)) ^ ")" let explode_card_constr = function | Eq card -> "=", card | Gt card -> ">", card | Lt card -> "<", card let add_card_constr tbl col where = function | None -> where | Some constr -> let op, card = explode_card_constr constr in (* count(_utente).hypothesis = 3 *) (sprintf "%s.%s %s %d" tbl col op card :: where) let add_diff_constr tbl where = function | None -> where | Some constr -> let op, card = explode_card_constr constr in (sprintf "%s.hypothesis - %s.conclusion %s %d" tbl tbl op card :: where) let add_all_constr tbl (n,from,where) concl full diff = match (concl, full, diff) with | None, None, None -> (n,from,where) | _ -> let where = add_card_constr tbl "conclusion" where concl in let where = add_card_constr tbl "statement" where full in let where = add_diff_constr tbl where diff in (n,tbl :: from, (if n > 0 then sprintf "table0.source = %s.source" tbl :: where else where)) let add_constraint tables (n,from,where) metadata = let obj_tbl,rel_tbl,sort_tbl,count_tbl = tables in let cur_tbl = tbln n in match metadata with | `Obj (uri, positions) -> let from = (sprintf "%s as %s" obj_tbl cur_tbl) :: from in let where = (sprintf "(%s.h_occurrence = \"%s\")" cur_tbl uri) :: mk_positions positions cur_tbl :: (if n=0 then [] else [sprintf "table0.source = %s.source" cur_tbl]) @ where in ((n+2), from, where) | `Rel positions -> let from = (sprintf "%s as %s" rel_tbl cur_tbl) :: from in let where = mk_positions positions cur_tbl :: (if n=0 then [] else [sprintf "table0.source = %s.source" cur_tbl]) @ where in ((n+2), from, where) | `Sort (sort, positions) -> let sort_str = CicPp.ppsort sort in let from = (sprintf "%s as %s" sort_tbl cur_tbl) :: from in let where = (sprintf "%s.h_sort = \"%s\"" cur_tbl sort_str ) :: mk_positions positions cur_tbl :: (if n=0 then [] else [sprintf "table0.source = %s.source" cur_tbl ]) @ where in ((n+2), from, where) let at_least ~(dbd:Mysql.dbd) ?concl_card ?full_card ?diff ?rating tables (metadata: MetadataTypes.constr list) = let obj_tbl,rel_tbl,sort_tbl, count_tbl = tables in if (metadata = []) && concl_card = None && full_card = None then failwith "MetadataQuery.at_least: no constraints given"; let (n,from,where) = List.fold_left (add_constraint tables) (0,[],[]) metadata in let selected = if metadata = [] then count_tbl else "table0" in let (n,from,where) = add_all_constr count_tbl (n,from,where) concl_card full_card diff in let from = String.concat ", " from in let where = String.concat " and " where in let query = match rating with | None -> sprintf "select %s.source from %s where %s" selected from where | Some `Hits -> sprintf ("select %s.source from %s, hits where %s" ^^ " and hits.source = %s.source order by hits.no desc") selected from where selected in prerr_endline query; let result = Mysql.exec dbd query in Mysql.map result (fun row -> match row.(0) with Some s -> s | _ -> assert false) let at_least ~(dbd:Mysql.dbd) ?concl_card ?full_card ?diff ?rating (metadata: MetadataTypes.constr list) = let module MT = MetadataTypes in if MT.are_tables_ownerized () then (at_least ~dbd ?concl_card ?full_card ?diff ?rating (MT.obj_tbl (),MT.rel_tbl (),MT.sort_tbl (), MT.count_tbl ()) metadata) @ (at_least ~dbd ?concl_card ?full_card ?diff ?rating (MT.library_obj_tbl,MT.library_rel_tbl,MT.library_sort_tbl, MT.library_count_tbl) metadata) else at_least ~dbd ?concl_card ?full_card ?diff ?rating (MT.library_obj_tbl,MT.library_rel_tbl,MT.library_sort_tbl, MT.library_count_tbl) metadata (** Prefix handling *) let filter_by_card n = SetSet.filter (fun t -> (StringSet.cardinal t) <= n) let merge n a b = let init = SetSet.union a b in let merge_single_set s1 b = SetSet.fold (fun s2 res -> SetSet.add (StringSet.union s1 s2) res) b SetSet.empty in let res = SetSet.fold (fun s1 res -> SetSet.union (merge_single_set s1 b) res) a init in filter_by_card n res let rec inspect_children n childs = List.fold_left (fun res term -> merge n (inspect_conclusion n term) res) SetSet.empty childs and add_root n root childs = let childunion = inspect_children n childs in let addroot = StringSet.add root in SetSet.fold (fun child newsets -> SetSet.add (addroot child) newsets) childunion (SetSet.singleton (StringSet.singleton root)) and inspect_conclusion n t = if n = 0 then SetSet.empty else match t with Cic.Rel _ | Cic.Meta _ | Cic.Sort _ | Cic.Implicit _ -> SetSet.empty | Cic.Var (u,exp_named_subst) -> SetSet.empty | Cic.Const (u,exp_named_subst) -> SetSet.singleton (StringSet.singleton (UriManager.string_of_uri u)) | Cic.MutInd (u, t, exp_named_subst) -> SetSet.singleton (StringSet.singleton (UriManager.string_of_uriref (u, [t]))) | Cic.MutConstruct (u, t, c, exp_named_subst) -> SetSet.singleton (StringSet.singleton (UriManager.string_of_uriref (u, [t; c]))) | Cic.Cast (t, _) -> inspect_conclusion n t | Cic.Prod (_, s, t) -> merge n (inspect_conclusion n s) (inspect_conclusion n t) | Cic.Lambda (_, s, t) -> merge n (inspect_conclusion n s) (inspect_conclusion n t) | Cic.LetIn (_, s, t) -> merge n (inspect_conclusion n s) (inspect_conclusion n t) | Cic.Appl ((Cic.Const (u,exp_named_subst))::l) -> let suri = UriManager.string_of_uri u in add_root (n-1) suri l | Cic.Appl ((Cic.MutInd (u, t, exp_named_subst))::l) -> let suri = UriManager.string_of_uriref (u, [t]) in add_root (n-1) suri l | Cic.Appl ((Cic.MutConstruct (u, t, c, exp_named_subst))::l) -> let suri = UriManager.string_of_uriref (u, [t; c]) in add_root (n-1) suri l | Cic.Appl l -> SetSet.empty | Cic.MutCase (u, t, tt, uu, m) -> SetSet.empty | Cic.Fix (_, m) -> SetSet.empty | Cic.CoFix (_, m) -> SetSet.empty let rec inspect_term n t = if n = 0 then assert false else match t with Cic.Rel _ | Cic.Meta _ | Cic.Sort _ | Cic.Implicit _ -> None, SetSet.empty | Cic.Var (u,exp_named_subst) -> None, SetSet.empty | Cic.Const (u,exp_named_subst) -> Some (UriManager.string_of_uri u), SetSet.empty | Cic.MutInd (u, t, exp_named_subst) -> let uri = UriManager.string_of_uriref (u, [t]) in Some uri, SetSet.empty | Cic.MutConstruct (u, t, c, exp_named_subst) -> let uri = UriManager.string_of_uriref (u, [t; c]) in Some uri, SetSet.empty | Cic.Cast (t, _) -> inspect_term n t | Cic.Prod (_, _, t) -> inspect_term n t | Cic.LetIn (_, _, t) -> inspect_term n t | Cic.Appl ((Cic.Const (u,exp_named_subst))::l) -> let suri = UriManager.string_of_uri u in let childunion = inspect_children (n-1) l in Some suri, childunion | Cic.Appl ((Cic.MutInd (u, t, exp_named_subst))::l) -> let suri = UriManager.string_of_uriref (u, [t]) in if u = HelmLibraryObjects.Logic.eq_URI && n>1 then (* equality is handled in a special way: in particular, the type, if defined, is always added to the prefix, and n is not decremented - it should have been n-2 *) match l with Cic.Const (u1,exp_named_subst1)::l1 -> let suri1 = UriManager.string_of_uri u1 in let inconcl = add_root (n-1) suri1 l1 in Some suri, inconcl | Cic.MutInd (u1, t1, exp_named_subst1)::l1 -> let suri1 = UriManager.string_of_uriref (u1, [t1]) in let inconcl = add_root (n-1) suri1 l1 in Some suri, inconcl | Cic.MutConstruct (u1, t1, c1, exp_named_subst1)::l1 -> let suri1 = UriManager.string_of_uriref (u1, [t1; c1]) in let inconcl = add_root (n-1) suri1 l1 in Some suri, inconcl | _ :: _ -> Some suri, SetSet.empty | _ -> assert false (* args number must be > 0 *) else let childunion = inspect_children (n-1) l in Some suri, childunion | Cic.Appl ((Cic.MutConstruct (u, t, c, exp_named_subst))::l) -> let suri = UriManager.string_of_uriref (u, [t; c]) in let childunion = inspect_children (n-1) l in Some suri, childunion | _ -> None, SetSet.empty let add_cardinality s = let l = SetSet.elements s in let res = List.map (fun set -> let el = StringSet.elements set in (List.length el, el)) l in (* ordered by descending cardinality *) List.sort (fun (n,_) (m,_) -> m - n) ((0,[])::res) let prefixes n t = match inspect_term n t with Some a, set -> Some a, add_cardinality set | None, set when (SetSet.is_empty set) -> None, [] | _, _ -> assert false let rec add children = List.fold_left (fun acc t -> StringSet.union (signature_concl t) acc) (StringSet.empty) children (* this function creates the set of all different constants appearing in the conclusion of the term *) and signature_concl = function Cic.Rel _ | Cic.Meta _ | Cic.Sort _ | Cic.Implicit _ -> StringSet.empty | Cic.Var (u,exp_named_subst) -> StringSet.empty | Cic.Const (u,exp_named_subst) -> StringSet.singleton (UriManager.string_of_uri u) | Cic.MutInd (u, t, exp_named_subst) -> let uri = UriManager.string_of_uriref (u, [t]) in StringSet.singleton uri | Cic.MutConstruct (u, t, c, exp_named_subst) -> let uri = UriManager.string_of_uriref (u, [t;c]) in StringSet.singleton uri | Cic.Cast (t, _) -> signature_concl t | Cic.Prod (_, s, t) -> StringSet.union (signature_concl s) (signature_concl t) | Cic.Lambda (_, s, t) -> StringSet.union (signature_concl s) (signature_concl t) | Cic.LetIn (_, s, t) -> StringSet.union (signature_concl s) (signature_concl t) | Cic.Appl l -> add l | Cic.MutCase _ | Cic.Fix _ | Cic.CoFix _ -> StringSet.empty let rec signature_of = function | Cic.Cast (t, _) -> signature_of t | Cic.Prod (_, _, t) -> signature_of t | Cic.LetIn (_, _, t) -> signature_of t | Cic.Appl ((Cic.Const (u,exp_named_subst))::l) -> let suri = UriManager.string_of_uri u in Some (suri, []), add l | Cic.Appl ((Cic.MutInd (u, t, exp_named_subst))::l) -> let suri = UriManager.string_of_uriref (u, [t]) in if u = HelmLibraryObjects.Logic.eq_URI then (* equality is handled in a special way: in particular, the type, if defined, is always added to the prefix, and n is not decremented - it should have been n-2 *) match l with Cic.Const (u1,exp_named_subst1)::l1 -> let suri1 = UriManager.string_of_uri u1 in let inconcl = StringSet.remove suri1 (add l1) in Some (suri, [suri1]), inconcl | Cic.MutInd (u1, t1, exp_named_subst1)::l1 -> let suri1 = UriManager.string_of_uriref (u1, [t1]) in let inconcl = StringSet.remove suri1 (add l1) in Some (suri, [suri1]), inconcl | Cic.MutConstruct (u1, t1, c1, exp_named_subst1)::l1 -> let suri1 = UriManager.string_of_uriref (u1, [t1;c1]) in let inconcl = StringSet.remove suri1 (add l1) in Some (suri, [suri1]), inconcl | _ :: _ -> Some (suri, []), StringSet.empty | _ -> assert false (* args number must be > 0 *) else Some (suri, []), add l | Cic.Appl ((Cic.MutConstruct (u, t, c, exp_named_subst))::l) -> let suri = UriManager.string_of_uriref (u, [t;c]) in Some (suri, []), add l | t -> None, signature_concl t (* takes a list of lists and returns the list of all elements without repetitions *) let union l = let rec drop_repetitions = function [] -> [] | [a] -> [a] | u1::u2::l when u1 = u2 -> drop_repetitions (u2::l) | u::l -> u::(drop_repetitions l) in drop_repetitions (List.sort Pervasives.compare (List.concat l)) let must_of_prefix ?(where = `Conclusion) m s = let positions = match where with | `Conclusion -> [`InConclusion] | `Statement -> [`InConclusion; `InHypothesis; `MainHypothesis None] in let s' = List.map (fun u -> `Obj (u, positions)) s in `Obj (m, [`MainConclusion None]) :: s' let escape = Str.global_replace (Str.regexp_string "\'") "\\'" let get_constants (dbd:Mysql.dbd) ~where uri = let uri = escape uri in let positions = match where with | `Conclusion -> [ MetadataTypes.mainconcl_pos; MetadataTypes.inconcl_pos ] | `Statement -> [ MetadataTypes.mainconcl_pos; MetadataTypes.inconcl_pos; MetadataTypes.inhyp_pos; MetadataTypes.mainhyp_pos ] in let query = let pos_predicate = String.concat " OR " (List.map (fun pos -> sprintf "(h_position = \"%s\")" pos) positions) in sprintf ("SELECT h_occurrence FROM %s WHERE source=\"%s\" AND (%s) UNION "^^ "SELECT h_occurrence FROM %s WHERE source=\"%s\" AND (%s)") (MetadataTypes.obj_tbl ()) uri pos_predicate MetadataTypes.library_obj_tbl uri pos_predicate in let result = Mysql.exec dbd query in let set = ref StringSet.empty in Mysql.iter result (fun col -> match col.(0) with | Some uri -> set := StringSet.add uri !set | _ -> assert false); !set let at_most ~(dbd:Mysql.dbd) ?(where = `Conclusion) only u = let inconcl = get_constants dbd ~where u in StringSet.subset inconcl only (* Special handling of equality. The problem is filtering out theorems just * containing variables (e.g. all the theorems in cic:/Coq/Ring/). Really * ad-hoc, no better solution found at the moment *) let myspeciallist_of_facts = [0,"cic:/Coq/Init/Logic/eq.ind#xpointer(1/1/1)"] let myspeciallist = [0,"cic:/Coq/Init/Logic/eq.ind#xpointer(1/1/1)"; (* 0,"cic:/Coq/Init/Logic/sym_eq.con"; *) 0,"cic:/Coq/Init/Logic/trans_eq.con"; 0,"cic:/Coq/Init/Logic/f_equal.con"; 0,"cic:/Coq/Init/Logic/f_equal2.con"; 0,"cic:/Coq/Init/Logic/f_equal3.con"] let compute_exactly ~(dbd:Mysql.dbd) ?(facts=false) ~where main prefixes = List.concat (List.map (fun (m,s) -> if ((m = 0) && (main = HelmLibraryObjects.Logic.eq_XURI)) then (if facts then myspeciallist_of_facts else myspeciallist) else let res = let must = must_of_prefix ~where main s in match where with | `Conclusion -> at_least ~dbd ~concl_card:(Eq (m+1)) must | `Statement -> at_least ~dbd ~full_card:(Eq (m+1)) must in List.map (fun uri -> (m, uri)) res) prefixes) (* critical value reached, fallback to "only" constraints *) let compute_with_only ~(dbd:Mysql.dbd) ?(facts=false) ?(where = `Conclusion) main prefixes constants = let max_prefix_length = match prefixes with | [] -> assert false | (max,_)::_ -> max in let maximal_prefixes = let rec filter res = function [] -> res | (n,s)::l when n = max_prefix_length -> filter ((n,s)::res) l | _::_-> res in filter [] prefixes in let greater_than = let all = union (List.map (fun (m,s) -> let must = must_of_prefix ~where main s in (let res = match where with | `Conclusion -> at_least ~dbd ~concl_card:(Gt (m+1)) must | `Statement -> at_least ~dbd ~full_card:(Gt (m+1)) must in (* we tag the uri with m+1, for sorting purposes *) List.map (fun uri -> (m+1, uri)) res)) maximal_prefixes) in List.filter (function (_,uri) -> at_most ~dbd ~where constants uri) all in let equal_to = compute_exactly ~dbd ~facts ~where main prefixes in greater_than @ equal_to (* real match query implementation *) let cmatch ~(dbd:Mysql.dbd) ?(facts=false) t = let (main, constants) = signature_of t in match main with | None -> [] | Some (main, types) -> (* the type of eq is not counted in constants_no *) let types_no = List.length types in let constants_no = StringSet.cardinal constants in if (constants_no > critical_value) then let prefixes = prefixes just_factor t in (match prefixes with | Some main, all_concl -> let all_constants = List.fold_right StringSet.add types (StringSet.add main constants) in compute_with_only ~dbd ~facts main all_concl all_constants | _, _ -> []) else (* in this case we compute all prefixes, and we do not need to apply the only constraints *) let prefixes = if constants_no = 0 then (if types_no = 0 then Some main, [0, []] else Some main, [0, []; types_no, types]) else prefixes (constants_no+types_no+1) t in (match prefixes with Some main, all_concl -> compute_exactly ~dbd ~facts ~where:`Conclusion main all_concl (* List.concat (List.map (fun (m,s) -> let must = must_of_prefix ~where:`Conclusion main s in let res = at_least ~dbd ~concl_card:(Eq (m+1)) must in List.map (fun uri -> (m, uri)) res) all_concl) *) | _, _ -> []) let power_upto upto consts = let l = StringSet.elements consts in List.sort (fun (n,_) (m,_) -> m - n) (List.fold_left (fun res a -> List.filter (function (n,l) -> n <= upto) res@(List.map (function (n,l) -> (n+1,a::l)) res)) [(0,[])] l) let power consts = let l = StringSet.elements consts in List.sort (fun (n,_) (m,_) -> m - n) (List.fold_left (fun res a -> res@(List.map (function (n,l) -> (n+1,a::l)) res)) [(0,[])] l) type where = [ `Conclusion | `Statement ] let sigmatch ~(dbd:Mysql.dbd) ?(facts=false) ?(where = `Conclusion) (main, constants) = match main with None -> [] | Some (main, types) -> let constants_no = StringSet.cardinal constants in if (constants_no > critical_value) then let subsets = let subsets = power_upto just_factor constants in let types_no = List.length types in List.map (function (n,l) -> (n+types_no,types@l)) subsets in let all_constants = List.fold_right StringSet.add types (StringSet.add main constants) in compute_with_only ~dbd ~where main subsets all_constants else let subsets = let subsets = power constants in let types_no = List.length types in if types_no > 0 then (0,[]) :: List.map (function (n,l) -> (n+types_no,types@l)) subsets else subsets in compute_exactly ~dbd ~facts ~where main subsets (* match query wrappers *) let cmatch'= cmatch let cmatch ~dbd ?(facts=false) term = List.map snd (List.sort (fun x y -> Pervasives.compare (fst y) (fst x)) (cmatch' ~dbd ~facts term)) let constants_of = signature_concl