(* type naif_indexing = (Cic.term * ((bool * Inference.equality) list)) list ;; *) type pos = Left | Right ;; let head_of_term = function | Cic.Appl (hd::tl) -> hd | t -> t ;; let index table eq = let _, (_, l, r, ordering), _, _ = eq in let hl = head_of_term l in let hr = head_of_term r in let index x pos = let x_entry = try Hashtbl.find table x with Not_found -> [] in Hashtbl.replace table x ((pos, eq)::x_entry) in let _ = match ordering with | Utils.Gt -> index hl Left | Utils.Lt -> index hr Right | _ -> index hl Left; index hr Right in (* index hl Left; *) (* index hr Right; *) table ;; let remove_index table eq = let _, (_, l, r, ordering), _, _ = eq in let hl = head_of_term l and hr = head_of_term r in let remove_index x pos = let x_entry = try Hashtbl.find table x with Not_found -> [] in let newentry = List.filter (fun e -> e <> (pos, eq)) x_entry in Hashtbl.replace table x newentry in remove_index hl Left; remove_index hr Right; table ;; let rec find_matches unif_fun metasenv context ugraph lift_amount term = let module C = Cic in let module U = Utils in let module S = CicSubstitution in let module M = CicMetaSubst in let module HL = HelmLibraryObjects in let cmp = !Utils.compare_terms in let names = Utils.names_of_context context in Printf.printf "CHIAMO find_matches (%s) su: %s\n" (if unif_fun == Inference.matching then "MATCHING" else if unif_fun == CicUnification.fo_unif then "UNIFICATION" else "??????????") (CicPp.pp term names); function | [] -> None | (pos, (proof, (ty, left, right, o), metas, args))::tl -> let do_match c other eq_URI = Printf.printf "provo con %s: %s, %s\n\n" (if unif_fun == Inference.matching then "MATCHING" else if unif_fun == CicUnification.fo_unif then "UNIFICATION" else "??????????") (CicPp.pp term names) (CicPp.pp (S.lift lift_amount c) names); let subst', metasenv', ugraph' = (* Inference.matching (metasenv @ metas) context term *) (* (S.lift lift_amount c) ugraph *) unif_fun (metasenv @ metas) context term (S.lift lift_amount c) ugraph in (* let names = U.names_of_context context in *) Printf.printf "MATCH FOUND: %s, %s\n" (CicPp.pp term names) (CicPp.pp (S.lift lift_amount c) names); Some (C.Rel (1 + lift_amount), subst', metasenv', ugraph', (proof, ty, c, other, eq_URI)) in let c, other, eq_URI = if pos = Left then left, right, HL.Logic.eq_ind_URI else right, left, HL.Logic.eq_ind_r_URI in if o <> U.Incomparable then try print_endline "SONO QUI!"; let res = do_match c other eq_URI in print_endline "RITORNO RES"; res with e -> Printf.printf "ERRORE!: %s\n" (Printexc.to_string e); find_matches unif_fun metasenv context ugraph lift_amount term tl else let res = try let res = do_match c other eq_URI in print_endline "RITORNO RES 2"; res with e -> None in match res with | Some (_, s, _, _, _) -> let c' = M.apply_subst s c and other' = M.apply_subst s other in let order = cmp c' other' in let names = U.names_of_context context in Printf.printf "c': %s\nother': %s\norder: %s\n\n" (CicPp.pp c' names) (CicPp.pp other' names) (U.string_of_comparison order); (* if cmp (M.apply_subst s c) (M.apply_subst s other) = U.Gt then *) if order = U.Gt then res else find_matches unif_fun metasenv context ugraph lift_amount term tl | None -> find_matches unif_fun metasenv context ugraph lift_amount term tl ;; let rec demodulate_term metasenv context ugraph table lift_amount term = let module C = Cic in let module S = CicSubstitution in let module M = CicMetaSubst in let module HL = HelmLibraryObjects in let hd_term = head_of_term term in let candidates = try Hashtbl.find table hd_term with Not_found -> [] in match term with | C.Meta _ -> None | term -> let res = find_matches Inference.matching metasenv context ugraph lift_amount term candidates in if res <> None then res else match term with | C.Appl l -> let res, ll = List.fold_left (fun (res, tl) t -> if res <> None then (res, tl @ [S.lift 1 t]) else let r = demodulate_term metasenv context ugraph table lift_amount t in match r with | None -> (None, tl @ [S.lift 1 t]) | Some (rel, _, _, _, _) -> (r, tl @ [rel])) (None, []) l in ( match res with | None -> None | Some (_, subst, menv, ug, info) -> Some (C.Appl ll, subst, menv, ug, info) ) | C.Prod (nn, s, t) -> let r1 = demodulate_term metasenv context ugraph table lift_amount s in ( match r1 with | None -> let r2 = demodulate_term metasenv ((Some (nn, C.Decl s))::context) ugraph table (lift_amount+1) t in ( match r2 with | None -> None | Some (t', subst, menv, ug, info) -> Some (C.Prod (nn, (S.lift 1 s), t'), subst, menv, ug, info) ) | Some (s', subst, menv, ug, info) -> Some (C.Prod (nn, s', (S.lift 1 t)), subst, menv, ug, info) ) | t -> (* Printf.printf "Ne` Appl ne` Prod: %s\n" *) (* (CicPp.pp t (Utils.names_of_context context)); *) None ;; let rec demodulate newmeta env table target = let module C = Cic in let module S = CicSubstitution in let module M = CicMetaSubst in let module HL = HelmLibraryObjects in print_endline "\n\ndemodulate"; let metasenv, context, ugraph = env in let proof, (eq_ty, left, right, order), metas, args = target in let metasenv' = metasenv @ metas in let build_newtarget is_left (t, subst, menv, ug, (proof', ty, what, other, eq_URI)) = let newterm, newproof = let bo = S.subst (M.apply_subst subst other) t in let bo'' = C.Appl ([C.MutInd (HL.Logic.eq_URI, 0, []); S.lift 1 eq_ty] @ if is_left then [bo; S.lift 1 right] else [S.lift 1 left; bo]) in let t' = C.Lambda (C.Anonymous, ty, bo'') in bo, M.apply_subst subst (C.Appl [C.Const (eq_URI, []); ty; what; t'; proof; other; proof']) in let newmeta, newtarget = let left, right = if is_left then newterm, right else left, newterm in let m = (Inference.metas_of_term left) @ (Inference.metas_of_term right) in let newmetasenv = List.filter (fun (i, _, _) -> List.mem i m) metas and newargs = List.filter (function C.Meta (i, _) -> List.mem i m | _ -> assert false) args in let ordering = !Utils.compare_terms left right in newmeta, (newproof, (eq_ty, left, right, ordering), newmetasenv, newargs) in newmeta, newtarget in let res = demodulate_term metasenv' context ugraph table 0 left in match res with | Some t -> let newmeta, newtarget = build_newtarget true t in if Inference.is_identity (metasenv', context, ugraph) newtarget then newmeta, newtarget else demodulate newmeta env table newtarget | None -> let res = demodulate_term metasenv' context ugraph table 0 right in match res with | Some t -> let newmeta, newtarget = build_newtarget false t in if Inference.is_identity (metasenv', context, ugraph) newtarget then newmeta, newtarget else demodulate newmeta env table newtarget | None -> newmeta, target ;; let rec betaexpand_term metasenv context ugraph table lift_amount term = let module C = Cic in let module S = CicSubstitution in let module M = CicMetaSubst in let module HL = HelmLibraryObjects in let hd_term = head_of_term term in let candidates = try Hashtbl.find table hd_term with Not_found -> [] in let res, lifted_term = match term with | C.Meta (i, l) -> let l = List.map (function | Some t -> Some (S.lift lift_amount t) | None -> None) l in [], C.Meta (i, l) | C.Rel m -> [], if m <= lift_amount then C.Rel m else C.Rel (m+1) | C.Prod (nn, s, t) -> let l1, lifted_s = betaexpand_term metasenv context ugraph table lift_amount s in let l2, lifted_t = betaexpand_term metasenv ((Some (nn, C.Decl s))::context) ugraph table (lift_amount+1) t in let l1' = List.map (fun (t, s, m, ug, info) -> C.Prod (nn, t, lifted_t), s, m, ug, info) l1 and l2' = List.map (fun (t, s, m, ug, info) -> C.Prod (nn, lifted_s, t), s, m, ug, info) l2 in l1' @ l2', C.Prod (nn, lifted_s, lifted_t) | C.Appl l -> let l', lifted_l = List.fold_right (fun arg (res, lifted_tl) -> let arg_res, lifted_arg = betaexpand_term metasenv context ugraph table lift_amount arg in let l1 = List.map (fun (a, s, m, ug, info) -> a::lifted_tl, s, m, ug, info) arg_res in (l1 @ (List.map (fun (r, s, m, ug, info) -> lifted_arg::r, s, m, ug, info) res), lifted_arg::lifted_tl) ) l ([], []) in (List.map (fun (l, s, m, ug, info) -> (C.Appl l, s, m, ug, info)) l', C.Appl lifted_l) | t -> [], (S.lift lift_amount t) in match term with | C.Meta _ -> res, lifted_term | _ -> (* let names = Utils.names_of_context context in *) (* Printf.printf "CHIAMO find_matches su: %s\n" (CicPp.pp term names); *) match find_matches CicUnification.fo_unif metasenv context ugraph lift_amount term candidates with | None -> res, lifted_term | Some r -> (* let _, _, _, _, (_, _, what, _, _) = r in *) (* Printf.printf "OK, aggiungo a res: %s\n" (CicPp.pp what names); *) r::res, lifted_term ;; let superposition_left (metasenv, context, ugraph) table target = let module C = Cic in let module S = CicSubstitution in let module M = CicMetaSubst in let module HL = HelmLibraryObjects in let module CR = CicReduction in let module U = Utils in print_endline "\n\nsuperposition_left"; let proof, (eq_ty, left, right, ordering), _, _ = target in let expansions, _ = let term = if ordering = U.Gt then left else right in let res = betaexpand_term metasenv context ugraph table 0 term in (* let names = U.names_of_context context in *) (* Printf.printf "\n\nsuperposition_left: %s\n%s\n" *) (* (CicPp.pp term names) *) (* (String.concat "\n" *) (* (List.map *) (* (fun (_, _, _, _, (_, _, what, _, _)) -> CicPp.pp what names) *) (* (fst res))); *) res in let build_new (bo, s, m, ug, (proof', ty, what, other, eq_URI)) = let newgoal, newproof = let bo' = S.subst (M.apply_subst s other) bo in let bo'' = C.Appl ( [C.MutInd (HL.Logic.eq_URI, 0, []); S.lift 1 eq_ty] @ if ordering = U.Gt then [bo'; S.lift 1 right] else [S.lift 1 left; bo']) in let t' = C.Lambda (C.Anonymous, ty, bo'') in S.subst (M.apply_subst s other) bo, M.apply_subst s (C.Appl [C.Const (eq_URI, []); ty; what; t'; proof; other; proof']) in let left, right, newordering = if ordering = U.Gt then newgoal, right, !Utils.compare_terms newgoal right else left, newgoal, !Utils.compare_terms left newgoal in (newproof, (eq_ty, left, right, ordering), [], []) in List.map build_new expansions ;; let superposition_right newmeta (metasenv, context, ugraph) table target = let module C = Cic in let module S = CicSubstitution in let module M = CicMetaSubst in let module HL = HelmLibraryObjects in let module CR = CicReduction in let module U = Utils in print_endline "\n\nsuperposition_right"; let eqproof, (eq_ty, left, right, ordering), newmetas, args = target in let metasenv' = metasenv @ newmetas in let maxmeta = ref newmeta in let res1, res2 = match ordering with | U.Gt -> fst (betaexpand_term metasenv' context ugraph table 0 left), [] | U.Lt -> [], fst (betaexpand_term metasenv' context ugraph table 0 right) | _ -> let res l r = List.filter (fun (_, subst, _, _, _) -> let subst = M.apply_subst subst in let o = !Utils.compare_terms (subst l) (subst r) in o <> U.Lt && o <> U.Le) (fst (betaexpand_term metasenv' context ugraph table 0 l)) in (res left right), (res right left) in let build_new ordering (bo, s, m, ug, (proof', ty, what, other, eq_URI)) = let newgoal, newproof = let bo' = S.subst (M.apply_subst s other) bo in let bo'' = C.Appl ( [C.MutInd (HL.Logic.eq_URI, 0, []); S.lift 1 eq_ty] @ if ordering = U.Gt then [bo'; S.lift 1 right] else [S.lift 1 left; bo']) in let t' = C.Lambda (C.Anonymous, ty, bo'') in S.subst (M.apply_subst s other) bo, M.apply_subst s (C.Appl [C.Const (eq_URI, []); ty; what; t'; eqproof; other; proof']) in let newmeta, newequality = let left, right, newordering = if ordering = U.Gt then newgoal, right, !Utils.compare_terms newgoal right else left, newgoal, !Utils.compare_terms left newgoal in Inference.fix_metas !maxmeta (newproof, (eq_ty, left, right, ordering), [], []) in maxmeta := newmeta; newequality in let new1 = List.map (build_new U.Gt) res1 and new2 = List.map (build_new U.Lt) res2 in let ok = function | _, (_, left, right, _), _, _ -> not (fst (CR.are_convertible context left right ugraph)) in (!maxmeta, (List.filter ok (new1 @ new2))) ;;