type retrieval_mode = Matching | Unification;; let empty_table () = Path_indexing.PSTrie.empty ;; let index = Path_indexing.index and remove_index = Path_indexing.remove_index and in_index = Path_indexing.in_index;; let get_candidates mode trie term = let s = match mode with | Matching -> Path_indexing.retrieve_generalizations trie term | Unification -> Path_indexing.retrieve_unifiables trie term in Path_indexing.PosEqSet.elements s ;; (* let empty_table () = Discrimination_tree.DiscriminationTree.empty ;; let index = Discrimination_tree.index and remove_index = Discrimination_tree.remove_index and in_index = Discrimination_tree.in_index;; let get_candidates mode tree term = match mode with | Matching -> Discrimination_tree.retrieve_generalizations tree term | Unification -> Discrimination_tree.retrieve_unifiables tree term ;; *) let rec find_matches metasenv context ugraph lift_amount term = let module C = Cic in let module U = Utils in let module S = CicSubstitution in let module M = CicMetaSubst in let module HL = HelmLibraryObjects in let cmp = !Utils.compare_terms in let names = Utils.names_of_context context in function | [] -> None | candidate::tl -> let pos, (proof, (ty, left, right, o), metas, args) = candidate in let do_match c other eq_URI = let subst', metasenv', ugraph' = Inference.matching (metasenv @ metas) context term (S.lift lift_amount c) ugraph in Some (C.Rel (1 + lift_amount), subst', metasenv', ugraph', (candidate, eq_URI)) in let c, other, eq_URI = if pos = Utils.Left then left, right, HL.Logic.eq_ind_URI else right, left, HL.Logic.eq_ind_r_URI in if o <> U.Incomparable then try do_match c other eq_URI with e -> find_matches metasenv context ugraph lift_amount term tl else let res = try do_match c other eq_URI with e -> None in match res with | Some (_, s, _, _, _) -> let c' = M.apply_subst s c and other' = M.apply_subst s other in let order = cmp c' other' in let names = U.names_of_context context in if order = U.Gt then res else find_matches metasenv context ugraph lift_amount term tl | None -> find_matches metasenv context ugraph lift_amount term tl ;; let rec find_all_matches ?(unif_fun=CicUnification.fo_unif) metasenv context ugraph lift_amount term = let module C = Cic in let module U = Utils in let module S = CicSubstitution in let module M = CicMetaSubst in let module HL = HelmLibraryObjects in let cmp = !Utils.compare_terms in let names = Utils.names_of_context context in function | [] -> [] | candidate::tl -> let pos, (proof, (ty, left, right, o), metas, args) = candidate in let do_match c other eq_URI = let subst', metasenv', ugraph' = unif_fun (metasenv @ metas) context term (S.lift lift_amount c) ugraph in (C.Rel (1 + lift_amount), subst', metasenv', ugraph', (candidate, eq_URI)) in let c, other, eq_URI = if pos = Utils.Left then left, right, HL.Logic.eq_ind_URI else right, left, HL.Logic.eq_ind_r_URI in if o <> U.Incomparable then try let res = do_match c other eq_URI in res::(find_all_matches ~unif_fun metasenv context ugraph lift_amount term tl) with e -> find_all_matches ~unif_fun metasenv context ugraph lift_amount term tl else try let res = do_match c other eq_URI in match res with | _, s, _, _, _ -> let c' = M.apply_subst s c and other' = M.apply_subst s other in let order = cmp c' other' in let names = U.names_of_context context in if order <> U.Lt && order <> U.Le then res::(find_all_matches ~unif_fun metasenv context ugraph lift_amount term tl) else find_all_matches ~unif_fun metasenv context ugraph lift_amount term tl with e -> find_all_matches ~unif_fun metasenv context ugraph lift_amount term tl ;; let subsumption env table target = let _, (ty, tl, tr, _), tmetas, _ = target in let metasenv, context, ugraph = env in let metasenv = metasenv @ tmetas in let samesubst subst subst' = let tbl = Hashtbl.create (List.length subst) in List.iter (fun (m, (c, t1, t2)) -> Hashtbl.add tbl m (c, t1, t2)) subst; List.for_all (fun (m, (c, t1, t2)) -> try let c', t1', t2' = Hashtbl.find tbl m in if (c = c') && (t1 = t1') && (t2 = t2') then true else false with Not_found -> true) subst' in let subsaux left right = let leftc = get_candidates Matching table left in let leftr = find_all_matches ~unif_fun:Inference.matching metasenv context ugraph 0 left leftc in let ok what (_, subst, menv, ug, ((pos, (_, (_, l, r, o), _, _)), _)) = try let other = if pos = Utils.Left then r else l in let subst', menv', ug' = Inference.matching metasenv context what other ugraph in samesubst subst subst' with e -> false in let r = List.exists (ok right) leftr in if r then true else let rightc = get_candidates Matching table right in let rightr = find_all_matches ~unif_fun:Inference.matching metasenv context ugraph 0 right rightc in List.exists (ok left) rightr in let res = subsaux tl tr in if res then ( Printf.printf "subsumption!:\ntarget: %s\n" (Inference.string_of_equality ~env target); print_newline (); ); res ;; let rec demodulate_term metasenv context ugraph table lift_amount term = let module C = Cic in let module S = CicSubstitution in let module M = CicMetaSubst in let module HL = HelmLibraryObjects in let candidates = get_candidates Matching table term in match term with | C.Meta _ -> None | term -> let res = find_matches metasenv context ugraph lift_amount term candidates in if res <> None then res else match term with | C.Appl l -> let res, ll = List.fold_left (fun (res, tl) t -> if res <> None then (res, tl @ [S.lift 1 t]) else let r = demodulate_term metasenv context ugraph table lift_amount t in match r with | None -> (None, tl @ [S.lift 1 t]) | Some (rel, _, _, _, _) -> (r, tl @ [rel])) (None, []) l in ( match res with | None -> None | Some (_, subst, menv, ug, eq_found) -> Some (C.Appl ll, subst, menv, ug, eq_found) ) | C.Prod (nn, s, t) -> let r1 = demodulate_term metasenv context ugraph table lift_amount s in ( match r1 with | None -> let r2 = demodulate_term metasenv ((Some (nn, C.Decl s))::context) ugraph table (lift_amount+1) t in ( match r2 with | None -> None | Some (t', subst, menv, ug, eq_found) -> Some (C.Prod (nn, (S.lift 1 s), t'), subst, menv, ug, eq_found) ) | Some (s', subst, menv, ug, eq_found) -> Some (C.Prod (nn, s', (S.lift 1 t)), subst, menv, ug, eq_found) ) | t -> None ;; let rec demodulation newmeta env table target = let module C = Cic in let module S = CicSubstitution in let module M = CicMetaSubst in let module HL = HelmLibraryObjects in let metasenv, context, ugraph = env in let proof, (eq_ty, left, right, order), metas, args = target in let metasenv' = metasenv @ metas in let build_newtarget is_left (t, subst, menv, ug, (eq_found, eq_URI)) = let pos, (proof', (ty, what, other, _), menv', args') = eq_found in let what, other = if pos = Utils.Left then what, other else other, what in let newterm, newproof = let bo = M.apply_subst subst (S.subst other t) in let bo'' = C.Appl ([C.MutInd (HL.Logic.eq_URI, 0, []); S.lift 1 eq_ty] @ if is_left then [bo; S.lift 1 right] else [S.lift 1 left; bo]) in let t' = C.Lambda (C.Anonymous, ty, bo'') in bo, M.apply_subst subst (C.Appl [C.Const (eq_URI, []); ty; what; t'; proof; other; proof']) in let left, right = if is_left then newterm, right else left, newterm in let m = (Inference.metas_of_term left) @ (Inference.metas_of_term right) in let newmetasenv = List.filter (fun (i, _, _) -> List.mem i m) metas and newargs = List.filter (function C.Meta (i, _) -> List.mem i m | _ -> assert false) args in let ordering = !Utils.compare_terms left right in newmeta, (newproof, (eq_ty, left, right, ordering), newmetasenv, newargs) in let res = demodulate_term metasenv' context ugraph table 0 left in let build_identity (p, (t, l, r, o), m, a) = match o with | Utils.Gt -> (p, (t, r, r, Utils.Eq), m, a) | _ -> (p, (t, l, l, Utils.Eq), m, a) in match res with | Some t -> let newmeta, newtarget = build_newtarget true t in if (Inference.is_identity (metasenv', context, ugraph) newtarget) || (Inference.meta_convertibility_eq target newtarget) then newmeta, newtarget else if subsumption env table newtarget then newmeta, build_identity newtarget else demodulation newmeta env table newtarget | None -> let res = demodulate_term metasenv' context ugraph table 0 right in match res with | Some t -> let newmeta, newtarget = build_newtarget false t in if (Inference.is_identity (metasenv', context, ugraph) newtarget) || (Inference.meta_convertibility_eq target newtarget) then newmeta, newtarget else if subsumption env table newtarget then newmeta, build_identity newtarget else demodulation newmeta env table newtarget | None -> newmeta, target ;; let rec betaexpand_term metasenv context ugraph table lift_amount term = let module C = Cic in let module S = CicSubstitution in let module M = CicMetaSubst in let module HL = HelmLibraryObjects in let candidates = get_candidates Unification table term in let res, lifted_term = match term with | C.Meta (i, l) -> let l', lifted_l = List.fold_right (fun arg (res, lifted_tl) -> match arg with | Some arg -> let arg_res, lifted_arg = betaexpand_term metasenv context ugraph table lift_amount arg in let l1 = List.map (fun (t, s, m, ug, eq_found) -> (Some t)::lifted_tl, s, m, ug, eq_found) arg_res in (l1 @ (List.map (fun (l, s, m, ug, eq_found) -> (Some lifted_arg)::l, s, m, ug, eq_found) res), (Some lifted_arg)::lifted_tl) | None -> (List.map (fun (r, s, m, ug, eq_found) -> None::r, s, m, ug, eq_found) res, None::lifted_tl) ) l ([], []) in let e = List.map (fun (l, s, m, ug, eq_found) -> (C.Meta (i, l), s, m, ug, eq_found)) l' in e, C.Meta (i, lifted_l) | C.Rel m -> [], if m <= lift_amount then C.Rel m else C.Rel (m+1) | C.Prod (nn, s, t) -> let l1, lifted_s = betaexpand_term metasenv context ugraph table lift_amount s in let l2, lifted_t = betaexpand_term metasenv ((Some (nn, C.Decl s))::context) ugraph table (lift_amount+1) t in let l1' = List.map (fun (t, s, m, ug, eq_found) -> C.Prod (nn, t, lifted_t), s, m, ug, eq_found) l1 and l2' = List.map (fun (t, s, m, ug, eq_found) -> C.Prod (nn, lifted_s, t), s, m, ug, eq_found) l2 in l1' @ l2', C.Prod (nn, lifted_s, lifted_t) | C.Appl l -> let l', lifted_l = List.fold_right (fun arg (res, lifted_tl) -> let arg_res, lifted_arg = betaexpand_term metasenv context ugraph table lift_amount arg in let l1 = List.map (fun (a, s, m, ug, eq_found) -> a::lifted_tl, s, m, ug, eq_found) arg_res in (l1 @ (List.map (fun (r, s, m, ug, eq_found) -> lifted_arg::r, s, m, ug, eq_found) res), lifted_arg::lifted_tl) ) l ([], []) in (List.map (fun (l, s, m, ug, eq_found) -> (C.Appl l, s, m, ug, eq_found)) l', C.Appl lifted_l) | t -> [], (S.lift lift_amount t) in match term with | C.Meta _ -> res, lifted_term | term -> let r = find_all_matches metasenv context ugraph lift_amount term candidates in r @ res, lifted_term ;; let superposition_left (metasenv, context, ugraph) table target = let module C = Cic in let module S = CicSubstitution in let module M = CicMetaSubst in let module HL = HelmLibraryObjects in let module CR = CicReduction in let module U = Utils in let proof, (eq_ty, left, right, ordering), _, _ = target in let expansions, _ = let term = if ordering = U.Gt then left else right in betaexpand_term metasenv context ugraph table 0 term in let build_new (bo, s, m, ug, (eq_found, eq_URI)) = let pos, (proof', (ty, what, other, _), menv', args') = eq_found in let what, other = if pos = Utils.Left then what, other else other, what in let newgoal, newproof = let bo' = M.apply_subst s (S.subst other bo) in let bo'' = C.Appl ( [C.MutInd (HL.Logic.eq_URI, 0, []); S.lift 1 eq_ty] @ if ordering = U.Gt then [bo'; S.lift 1 right] else [S.lift 1 left; bo']) in let t' = C.Lambda (C.Anonymous, ty, bo'') in bo', M.apply_subst s (C.Appl [C.Const (eq_URI, []); ty; what; t'; proof; other; proof']) in let left, right = if ordering = U.Gt then newgoal, right else left, newgoal in let neworder = !Utils.compare_terms left right in (newproof, (eq_ty, left, right, neworder), [], []) in List.map build_new expansions ;; let superposition_right newmeta (metasenv, context, ugraph) table target = let module C = Cic in let module S = CicSubstitution in let module M = CicMetaSubst in let module HL = HelmLibraryObjects in let module CR = CicReduction in let module U = Utils in let eqproof, (eq_ty, left, right, ordering), newmetas, args = target in let metasenv' = metasenv @ newmetas in let maxmeta = ref newmeta in let res1, res2 = match ordering with | U.Gt -> fst (betaexpand_term metasenv' context ugraph table 0 left), [] | U.Lt -> [], fst (betaexpand_term metasenv' context ugraph table 0 right) | _ -> let res l r = List.filter (fun (_, subst, _, _, _) -> let subst = M.apply_subst subst in let o = !Utils.compare_terms (subst l) (subst r) in o <> U.Lt && o <> U.Le) (fst (betaexpand_term metasenv' context ugraph table 0 l)) in (res left right), (res right left) in let build_new ordering (bo, s, m, ug, (eq_found, eq_URI)) = let pos, (proof', (ty, what, other, _), menv', args') = eq_found in let what, other = if pos = Utils.Left then what, other else other, what in let newgoal, newproof = let bo' = M.apply_subst s (S.subst other bo) in let bo'' = C.Appl ( [C.MutInd (HL.Logic.eq_URI, 0, []); S.lift 1 eq_ty] @ if ordering = U.Gt then [bo'; S.lift 1 right] else [S.lift 1 left; bo']) in let t' = C.Lambda (C.Anonymous, ty, bo'') in bo', M.apply_subst s (C.Appl [C.Const (eq_URI, []); ty; what; t'; eqproof; other; proof']) in let newmeta, newequality = let left, right = if ordering = U.Gt then newgoal, M.apply_subst s right else M.apply_subst s left, newgoal in let neworder = !Utils.compare_terms left right and newmenv = newmetas @ menv' and newargs = args @ args' in let eq' = (newproof, (eq_ty, left, right, neworder), newmenv, newargs) and env = (metasenv, context, ugraph) in let newm, eq' = Inference.fix_metas !maxmeta eq' in newm, eq' in maxmeta := newmeta; newequality in let new1 = List.map (build_new U.Gt) res1 and new2 = List.map (build_new U.Lt) res2 in let ok = function | _, (_, left, right, _), _, _ -> not (fst (CR.are_convertible context left right ugraph)) in (!maxmeta, (List.filter ok (new1 @ new2))) ;;