(* Copyright (C) 2005, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://cs.unibo.it/helm/. *) let debug_print = Utils.debug_print;; type retrieval_mode = Matching | Unification;; let print_candidates mode term res = let _ = match mode with | Matching -> Printf.printf "| candidates Matching %s\n" (CicPp.ppterm term) | Unification -> Printf.printf "| candidates Unification %s\n" (CicPp.ppterm term) in print_endline (String.concat "\n" (List.map (fun (p, e) -> Printf.sprintf "| (%s, %s)" (Utils.string_of_pos p) (Inference.string_of_equality e)) res)); print_endline "|"; ;; let indexing_retrieval_time = ref 0.;; (* let my_apply_subst subst term = *) (* let module C = Cic in *) (* let lookup lift_amount meta = *) (* match meta with *) (* | C.Meta (i, _) -> ( *) (* try *) (* let _, (_, t, _) = List.find (fun (m, _) -> m = i) subst in *) (* (\* CicSubstitution.lift lift_amount *\)t *) (* with Not_found -> meta *) (* ) *) (* | _ -> assert false *) (* in *) (* let rec apply_aux lift_amount = function *) (* | C.Meta (i, l) as t -> lookup lift_amount t *) (* | C.Appl l -> C.Appl (List.map (apply_aux lift_amount) l) *) (* | C.Prod (nn, s, t) -> *) (* C.Prod (nn, apply_aux lift_amount s, apply_aux (lift_amount+1) t) *) (* | C.Lambda (nn, s, t) -> *) (* C.Lambda (nn, apply_aux lift_amount s, apply_aux (lift_amount+1) t) *) (* | t -> t *) (* in *) (* apply_aux 0 term *) (* ;; *) (* let apply_subst subst term = *) (* Printf.printf "| apply_subst:\n| subst: %s\n| term: %s\n" *) (* (Utils.print_subst ~prefix:" ; " subst) (CicPp.ppterm term); *) (* let res = my_apply_subst subst term in *) (* (\* let res = CicMetaSubst.apply_subst subst term in *\) *) (* Printf.printf "| res: %s\n" (CicPp.ppterm res); *) (* print_endline "|"; *) (* res *) (* ;; *) (* let apply_subst = my_apply_subst *) let apply_subst = CicMetaSubst.apply_subst (* let apply_subst = *) (* let profile = CicUtil.profile "apply_subst" in *) (* (fun s a -> profile (apply_subst s) a) *) (* ;; *) (* (* NO INDEXING *) let empty_table () = [] let index table equality = let _, _, (_, l, r, ordering), _, _ = equality in match ordering with | Utils.Gt -> (Utils.Left, equality)::table | Utils.Lt -> (Utils.Right, equality)::table | _ -> (Utils.Left, equality)::(Utils.Right, equality)::table ;; let remove_index table equality = List.filter (fun (p, e) -> e != equality) table ;; let in_index table equality = List.exists (fun (p, e) -> e == equality) table ;; let get_candidates mode table term = table *) (* (* PATH INDEXING *) let empty_table () = Path_indexing.PSTrie.empty ;; let index = Path_indexing.index and remove_index = Path_indexing.remove_index and in_index = Path_indexing.in_index;; let get_candidates mode trie term = let t1 = Unix.gettimeofday () in let res = let s = match mode with | Matching -> Path_indexing.retrieve_generalizations trie term | Unification -> Path_indexing.retrieve_unifiables trie term (* Path_indexing.retrieve_all trie term *) in Path_indexing.PosEqSet.elements s in (* print_candidates mode term res; *) let t2 = Unix.gettimeofday () in indexing_retrieval_time := !indexing_retrieval_time +. (t2 -. t1); res ;; *) (* DISCRIMINATION TREES *) let init_index () = Hashtbl.clear Discrimination_tree.arities; ;; let empty_table () = Discrimination_tree.DiscriminationTree.empty ;; let index = Discrimination_tree.index and remove_index = Discrimination_tree.remove_index and in_index = Discrimination_tree.in_index;; let get_candidates mode tree term = let t1 = Unix.gettimeofday () in let res = let s = match mode with | Matching -> Discrimination_tree.retrieve_generalizations tree term | Unification -> Discrimination_tree.retrieve_unifiables tree term in Discrimination_tree.PosEqSet.elements s in (* print_candidates mode term res; *) (* print_endline (Discrimination_tree.string_of_discrimination_tree tree); *) (* print_newline (); *) let t2 = Unix.gettimeofday () in indexing_retrieval_time := !indexing_retrieval_time +. (t2 -. t1); res ;; (* let get_candidates = *) (* let profile = CicUtil.profile "Indexing.get_candidates" in *) (* (fun mode tree term -> profile.profile (get_candidates mode tree) term) *) (* ;; *) let match_unif_time_ok = ref 0.;; let match_unif_time_no = ref 0.;; let rec find_matches metasenv context ugraph lift_amount term termty = let module C = Cic in let module U = Utils in let module S = CicSubstitution in let module M = CicMetaSubst in let module HL = HelmLibraryObjects in let cmp = !Utils.compare_terms in (* let names = Utils.names_of_context context in *) (* let termty, ugraph = *) (* CicTypeChecker.type_of_aux' metasenv context term ugraph *) (* in *) function | [] -> None | candidate::tl -> let pos, (_, proof, (ty, left, right, o), metas, args) = candidate in (* if not (fst (CicReduction.are_convertible *) (* ~metasenv context termty ty ugraph)) then ( *) (* (\* debug_print (lazy ( *\) *) (* (\* Printf.sprintf "CANDIDATE HAS WRONG TYPE: %s required, %s found" *\) *) (* (\* (CicPp.pp termty names) (CicPp.pp ty names))); *\) *) (* find_matches metasenv context ugraph lift_amount term termty tl *) (* ) else *) let do_match c (* other *) eq_URI = let subst', metasenv', ugraph' = let t1 = Unix.gettimeofday () in try let r = Inference.matching (metasenv @ metas) context term (S.lift lift_amount c) ugraph in let t2 = Unix.gettimeofday () in match_unif_time_ok := !match_unif_time_ok +. (t2 -. t1); r with Inference.MatchingFailure as e -> let t2 = Unix.gettimeofday () in match_unif_time_no := !match_unif_time_no +. (t2 -. t1); raise e in Some (C.Rel (1 + lift_amount), subst', metasenv', ugraph', (candidate, eq_URI)) in let c, other, eq_URI = if pos = Utils.Left then left, right, Utils.eq_ind_URI () else right, left, Utils.eq_ind_r_URI () in if o <> U.Incomparable then try do_match c (* other *) eq_URI with Inference.MatchingFailure -> find_matches metasenv context ugraph lift_amount term termty tl else let res = try do_match c (* other *) eq_URI with Inference.MatchingFailure -> None in match res with | Some (_, s, _, _, _) -> let c' = (* M. *)apply_subst s c and other' = (* M. *)apply_subst s other in let order = cmp c' other' in let names = U.names_of_context context in (* let _ = *) (* debug_print *) (* (Printf.sprintf "OK matching: %s and %s, order: %s" *) (* (CicPp.ppterm c') *) (* (CicPp.ppterm other') *) (* (Utils.string_of_comparison order)); *) (* debug_print *) (* (Printf.sprintf "subst:\n%s\n" (Utils.print_subst s)) *) (* in *) if order = U.Gt then res else find_matches metasenv context ugraph lift_amount term termty tl | None -> find_matches metasenv context ugraph lift_amount term termty tl ;; let rec find_all_matches ?(unif_fun=Inference.unification) metasenv context ugraph lift_amount term termty = let module C = Cic in let module U = Utils in let module S = CicSubstitution in let module M = CicMetaSubst in let module HL = HelmLibraryObjects in let cmp = !Utils.compare_terms in (* let names = Utils.names_of_context context in *) (* let termty, ugraph = *) (* CicTypeChecker.type_of_aux' metasenv context term ugraph *) (* in *) (* let _ = *) (* match term with *) (* | C.Meta _ -> assert false *) (* | _ -> () *) (* in *) function | [] -> [] | candidate::tl -> let pos, (_, _, (ty, left, right, o), metas, args) = candidate in (* if not (fst (CicReduction.are_convertible *) (* ~metasenv context termty ty ugraph)) then ( *) (* (\* debug_print (lazy ( *\) *) (* (\* Printf.sprintf "CANDIDATE HAS WRONG TYPE: %s required, %s found" *\) *) (* (\* (CicPp.pp termty names) (CicPp.pp ty names))); *\) *) (* find_all_matches ~unif_fun metasenv context ugraph *) (* lift_amount term termty tl *) (* ) else *) let do_match c (* other *) eq_URI = let subst', metasenv', ugraph' = let t1 = Unix.gettimeofday () in try let r = unif_fun (metasenv @ metas) context term (S.lift lift_amount c) ugraph in let t2 = Unix.gettimeofday () in match_unif_time_ok := !match_unif_time_ok +. (t2 -. t1); r with | Inference.MatchingFailure | CicUnification.UnificationFailure _ | CicUnification.Uncertain _ as e -> let t2 = Unix.gettimeofday () in match_unif_time_no := !match_unif_time_no +. (t2 -. t1); raise e in (C.Rel (1 + lift_amount), subst', metasenv', ugraph', (candidate, eq_URI)) in let c, other, eq_URI = if pos = Utils.Left then left, right, Utils.eq_ind_URI () else right, left, Utils.eq_ind_r_URI () in if o <> U.Incomparable then try let res = do_match c (* other *) eq_URI in res::(find_all_matches ~unif_fun metasenv context ugraph lift_amount term termty tl) with | Inference.MatchingFailure | CicUnification.UnificationFailure _ | CicUnification.Uncertain _ -> find_all_matches ~unif_fun metasenv context ugraph lift_amount term termty tl else try let res = do_match c (* other *) eq_URI in match res with | _, s, _, _, _ -> let c' = (* M. *)apply_subst s c and other' = (* M. *)apply_subst s other in let order = cmp c' other' in let names = U.names_of_context context in if order <> U.Lt && order <> U.Le then res::(find_all_matches ~unif_fun metasenv context ugraph lift_amount term termty tl) else find_all_matches ~unif_fun metasenv context ugraph lift_amount term termty tl with | Inference.MatchingFailure | CicUnification.UnificationFailure _ | CicUnification.Uncertain _ -> find_all_matches ~unif_fun metasenv context ugraph lift_amount term termty tl ;; let subsumption env table target = let _, (ty, left, right, _), tmetas, _ = target in let metasenv, context, ugraph = env in let metasenv = metasenv @ tmetas in let samesubst subst subst' = let tbl = Hashtbl.create (List.length subst) in List.iter (fun (m, (c, t1, t2)) -> Hashtbl.add tbl m (c, t1, t2)) subst; List.for_all (fun (m, (c, t1, t2)) -> try let c', t1', t2' = Hashtbl.find tbl m in if (c = c') && (t1 = t1') && (t2 = t2') then true else false with Not_found -> true) subst' in let leftr = match left with | Cic.Meta _ -> [] | _ -> let leftc = get_candidates Matching table left in find_all_matches ~unif_fun:Inference.matching metasenv context ugraph 0 left ty leftc in let rec ok what = function | [] -> false, [] | (_, subst, menv, ug, ((pos, (_, _, (_, l, r, o), _, _)), _))::tl -> try let other = if pos = Utils.Left then r else l in let subst', menv', ug' = let t1 = Unix.gettimeofday () in try let r = Inference.matching metasenv context what other ugraph in let t2 = Unix.gettimeofday () in match_unif_time_ok := !match_unif_time_ok +. (t2 -. t1); r with Inference.MatchingFailure as e -> let t2 = Unix.gettimeofday () in match_unif_time_no := !match_unif_time_no +. (t2 -. t1); raise e in if samesubst subst subst' then true, subst else ok what tl with Inference.MatchingFailure -> ok what tl in let r, subst = ok right leftr in if r then true, subst else let rightr = match right with | Cic.Meta _ -> [] | _ -> let rightc = get_candidates Matching table right in find_all_matches ~unif_fun:Inference.matching metasenv context ugraph 0 right ty rightc in ok left rightr ;; let rec demodulation_aux metasenv context ugraph table lift_amount term = let module C = Cic in let module S = CicSubstitution in let module M = CicMetaSubst in let module HL = HelmLibraryObjects in let candidates = get_candidates Matching table term in match term with | C.Meta _ -> None | term -> let termty, ugraph = C.Implicit None, ugraph (* CicTypeChecker.type_of_aux' metasenv context term ugraph *) in let res = find_matches metasenv context ugraph lift_amount term termty candidates in if res <> None then res else match term with | C.Appl l -> let res, ll = List.fold_left (fun (res, tl) t -> if res <> None then (res, tl @ [S.lift 1 t]) else let r = demodulation_aux metasenv context ugraph table lift_amount t in match r with | None -> (None, tl @ [S.lift 1 t]) | Some (rel, _, _, _, _) -> (r, tl @ [rel])) (None, []) l in ( match res with | None -> None | Some (_, subst, menv, ug, eq_found) -> Some (C.Appl ll, subst, menv, ug, eq_found) ) | C.Prod (nn, s, t) -> let r1 = demodulation_aux metasenv context ugraph table lift_amount s in ( match r1 with | None -> let r2 = demodulation_aux metasenv ((Some (nn, C.Decl s))::context) ugraph table (lift_amount+1) t in ( match r2 with | None -> None | Some (t', subst, menv, ug, eq_found) -> Some (C.Prod (nn, (S.lift 1 s), t'), subst, menv, ug, eq_found) ) | Some (s', subst, menv, ug, eq_found) -> Some (C.Prod (nn, s', (S.lift 1 t)), subst, menv, ug, eq_found) ) | C.Lambda (nn, s, t) -> let r1 = demodulation_aux metasenv context ugraph table lift_amount s in ( match r1 with | None -> let r2 = demodulation_aux metasenv ((Some (nn, C.Decl s))::context) ugraph table (lift_amount+1) t in ( match r2 with | None -> None | Some (t', subst, menv, ug, eq_found) -> Some (C.Lambda (nn, (S.lift 1 s), t'), subst, menv, ug, eq_found) ) | Some (s', subst, menv, ug, eq_found) -> Some (C.Lambda (nn, s', (S.lift 1 t)), subst, menv, ug, eq_found) ) | t -> None ;; let build_newtarget_time = ref 0.;; let demod_counter = ref 1;; let rec demodulation_equality newmeta env table sign target = let module C = Cic in let module S = CicSubstitution in let module M = CicMetaSubst in let module HL = HelmLibraryObjects in let metasenv, context, ugraph = env in let _, proof, (eq_ty, left, right, order), metas, args = target in let metasenv' = metasenv @ metas in let maxmeta = ref newmeta in let build_newtarget is_left (t, subst, menv, ug, (eq_found, eq_URI)) = let time1 = Unix.gettimeofday () in let pos, (_, proof', (ty, what, other, _), menv', args') = eq_found in let ty = try fst (CicTypeChecker.type_of_aux' metasenv context what ugraph) with CicUtil.Meta_not_found _ -> ty in let what, other = if pos = Utils.Left then what, other else other, what in let newterm, newproof = let bo = (* M. *)apply_subst subst (S.subst other t) in (* let t' = *) (* let name = C.Name ("x_Demod_" ^ (string_of_int !demod_counter)) in *) (* incr demod_counter; *) (* let l, r = *) (* if is_left then t, S.lift 1 right else S.lift 1 left, t in *) (* (name, ty, S.lift 1 eq_ty, l, r) *) (* in *) let name = C.Name ("x_Demod_" ^ (string_of_int !demod_counter)) in incr demod_counter; let bo' = let l, r = if is_left then t, S.lift 1 right else S.lift 1 left, t in C.Appl [C.MutInd (LibraryObjects.eq_URI (), 0, []); S.lift 1 eq_ty; l; r] in if sign = Utils.Positive then (bo, Inference.ProofBlock ( subst, eq_URI, (name, ty), bo'(* t' *), eq_found, proof)) else let metaproof = incr maxmeta; let irl = CicMkImplicit.identity_relocation_list_for_metavariable context in Printf.printf "\nADDING META: %d\n" !maxmeta; print_newline (); C.Meta (!maxmeta, irl) in (* let target' = *) let eq_found = let proof' = (* let ens = *) (* if pos = Utils.Left then *) (* build_ens_for_sym_eq ty what other *) (* else *) (* build_ens_for_sym_eq ty other what *) let termlist = if pos = Utils.Left then [ty; what; other] else [ty; other; what] in Inference.ProofSymBlock (termlist, proof') in let what, other = if pos = Utils.Left then what, other else other, what in pos, (0, proof', (ty, other, what, Utils.Incomparable), menv', args') in let target_proof = let pb = Inference.ProofBlock (subst, eq_URI, (name, ty), bo'(* t' *), eq_found, Inference.BasicProof metaproof) in match proof with | Inference.BasicProof _ -> print_endline "replacing a BasicProof"; pb | Inference.ProofGoalBlock (_, parent_proof(* parent_eq *)) -> print_endline "replacing another ProofGoalBlock"; Inference.ProofGoalBlock (pb, parent_proof(* parent_eq *)) | _ -> assert false in (* (0, target_proof, (eq_ty, left, right, order), metas, args) *) (* in *) let refl = C.Appl [C.MutConstruct (* reflexivity *) (LibraryObjects.eq_URI (), 0, 1, []); eq_ty; if is_left then right else left] in (bo, Inference.ProofGoalBlock (Inference.BasicProof refl, target_proof(* target' *))) in let left, right = if is_left then newterm, right else left, newterm in let m = (Inference.metas_of_term left) @ (Inference.metas_of_term right) in let newmetasenv = List.filter (fun (i, _, _) -> List.mem i m) metas and newargs = args (* let a = *) (* List.filter *) (* (function C.Meta (i, _) -> List.mem i m | _ -> assert false) args in *) (* let delta = (List.length args) - (List.length a) in *) (* if delta > 0 then *) (* let first = List.hd a in *) (* let rec aux l = function *) (* | 0 -> l *) (* | d -> let l = aux l (d-1) in l @ [first] *) (* in *) (* aux a delta *) (* else *) (* a *) in let ordering = !Utils.compare_terms left right in let time2 = Unix.gettimeofday () in build_newtarget_time := !build_newtarget_time +. (time2 -. time1); let res = let w = Utils.compute_equality_weight eq_ty left right in (w, newproof, (eq_ty, left, right, ordering), newmetasenv, newargs) in !maxmeta, res in let res = demodulation_aux metasenv' context ugraph table 0 left in match res with | Some t -> let newmeta, newtarget = build_newtarget true t in if (Inference.is_identity (metasenv', context, ugraph) newtarget) || (Inference.meta_convertibility_eq target newtarget) then newmeta, newtarget else (* if subsumption env table newtarget then *) (* newmeta, build_identity newtarget *) (* else *) demodulation_equality newmeta env table sign newtarget | None -> let res = demodulation_aux metasenv' context ugraph table 0 right in match res with | Some t -> let newmeta, newtarget = build_newtarget false t in if (Inference.is_identity (metasenv', context, ugraph) newtarget) || (Inference.meta_convertibility_eq target newtarget) then newmeta, newtarget else (* if subsumption env table newtarget then *) (* newmeta, build_identity newtarget *) (* else *) demodulation_equality newmeta env table sign newtarget | None -> newmeta, target ;; let rec betaexpand_term metasenv context ugraph table lift_amount term = let module C = Cic in let module S = CicSubstitution in let module M = CicMetaSubst in let module HL = HelmLibraryObjects in let candidates = get_candidates Unification table term in let res, lifted_term = match term with | C.Meta (i, l) -> let l', lifted_l = List.fold_right (fun arg (res, lifted_tl) -> match arg with | Some arg -> let arg_res, lifted_arg = betaexpand_term metasenv context ugraph table lift_amount arg in let l1 = List.map (fun (t, s, m, ug, eq_found) -> (Some t)::lifted_tl, s, m, ug, eq_found) arg_res in (l1 @ (List.map (fun (l, s, m, ug, eq_found) -> (Some lifted_arg)::l, s, m, ug, eq_found) res), (Some lifted_arg)::lifted_tl) | None -> (List.map (fun (r, s, m, ug, eq_found) -> None::r, s, m, ug, eq_found) res, None::lifted_tl) ) l ([], []) in let e = List.map (fun (l, s, m, ug, eq_found) -> (C.Meta (i, l), s, m, ug, eq_found)) l' in e, C.Meta (i, lifted_l) | C.Rel m -> [], if m <= lift_amount then C.Rel m else C.Rel (m+1) | C.Prod (nn, s, t) -> let l1, lifted_s = betaexpand_term metasenv context ugraph table lift_amount s in let l2, lifted_t = betaexpand_term metasenv ((Some (nn, C.Decl s))::context) ugraph table (lift_amount+1) t in let l1' = List.map (fun (t, s, m, ug, eq_found) -> C.Prod (nn, t, lifted_t), s, m, ug, eq_found) l1 and l2' = List.map (fun (t, s, m, ug, eq_found) -> C.Prod (nn, lifted_s, t), s, m, ug, eq_found) l2 in l1' @ l2', C.Prod (nn, lifted_s, lifted_t) | C.Lambda (nn, s, t) -> let l1, lifted_s = betaexpand_term metasenv context ugraph table lift_amount s in let l2, lifted_t = betaexpand_term metasenv ((Some (nn, C.Decl s))::context) ugraph table (lift_amount+1) t in let l1' = List.map (fun (t, s, m, ug, eq_found) -> C.Lambda (nn, t, lifted_t), s, m, ug, eq_found) l1 and l2' = List.map (fun (t, s, m, ug, eq_found) -> C.Lambda (nn, lifted_s, t), s, m, ug, eq_found) l2 in l1' @ l2', C.Lambda (nn, lifted_s, lifted_t) | C.Appl l -> let l', lifted_l = List.fold_right (fun arg (res, lifted_tl) -> let arg_res, lifted_arg = betaexpand_term metasenv context ugraph table lift_amount arg in let l1 = List.map (fun (a, s, m, ug, eq_found) -> a::lifted_tl, s, m, ug, eq_found) arg_res in (l1 @ (List.map (fun (r, s, m, ug, eq_found) -> lifted_arg::r, s, m, ug, eq_found) res), lifted_arg::lifted_tl) ) l ([], []) in (List.map (fun (l, s, m, ug, eq_found) -> (C.Appl l, s, m, ug, eq_found)) l', C.Appl lifted_l) | t -> [], (S.lift lift_amount t) in match term with | C.Meta (i, l) -> res, lifted_term | term -> let termty, ugraph = C.Implicit None, ugraph (* CicTypeChecker.type_of_aux' metasenv context term ugraph *) in let r = find_all_matches metasenv context ugraph lift_amount term termty candidates in r @ res, lifted_term ;; let sup_l_counter = ref 1;; let superposition_left newmeta (metasenv, context, ugraph) table target = let module C = Cic in let module S = CicSubstitution in let module M = CicMetaSubst in let module HL = HelmLibraryObjects in let module CR = CicReduction in let module U = Utils in let weight, proof, (eq_ty, left, right, ordering), _, _ = target in let expansions, _ = let term = if ordering = U.Gt then left else right in betaexpand_term metasenv context ugraph table 0 term in let maxmeta = ref newmeta in let build_new (bo, s, m, ug, (eq_found, eq_URI)) = print_endline "\nSUPERPOSITION LEFT\n"; let time1 = Unix.gettimeofday () in let pos, (_, proof', (ty, what, other, _), menv', args') = eq_found in let what, other = if pos = Utils.Left then what, other else other, what in let newgoal, newproof = let bo' = (* M. *)apply_subst s (S.subst other bo) in (* let t' = *) (* let name = C.Name ("x_SupL_" ^ (string_of_int !sup_l_counter)) in *) (* incr sup_l_counter; *) (* let l, r = *) (* if ordering = U.Gt then bo, S.lift 1 right else S.lift 1 left, bo in *) (* (name, ty, S.lift 1 eq_ty, l, r) *) (* in *) let name = C.Name ("x_SupL_" ^ (string_of_int !sup_l_counter)) in incr sup_l_counter; let bo'' = let l, r = if ordering = U.Gt then bo, S.lift 1 right else S.lift 1 left, bo in C.Appl [C.MutInd (LibraryObjects.eq_URI (), 0, []); S.lift 1 eq_ty; l; r] in incr maxmeta; let metaproof = let irl = CicMkImplicit.identity_relocation_list_for_metavariable context in C.Meta (!maxmeta, irl) in (* let target' = *) let eq_found = let proof' = (* let ens = *) (* if pos = Utils.Left then *) (* build_ens_for_sym_eq ty what other *) (* else *) (* build_ens_for_sym_eq ty other what *) (* in *) let termlist = if pos = Utils.Left then [ty; what; other] else [ty; other; what] in Inference.ProofSymBlock (termlist, proof') in let what, other = if pos = Utils.Left then what, other else other, what in pos, (0, proof', (ty, other, what, Utils.Incomparable), menv', args') in let target_proof = let pb = Inference.ProofBlock (s, eq_URI, (name, ty), bo''(* t' *), eq_found, Inference.BasicProof metaproof) in match proof with | Inference.BasicProof _ -> print_endline "replacing a BasicProof"; pb | Inference.ProofGoalBlock (_, parent_proof(* parent_eq *)) -> print_endline "replacing another ProofGoalBlock"; Inference.ProofGoalBlock (pb, parent_proof(* parent_eq *)) | _ -> assert false in (* (weight, target_proof, (eq_ty, left, right, ordering), [], []) *) (* in *) let refl = C.Appl [C.MutConstruct (* reflexivity *) (LibraryObjects.eq_URI (), 0, 1, []); eq_ty; if ordering = U.Gt then right else left] in (bo', Inference.ProofGoalBlock (Inference.BasicProof refl, target_proof(* target' *))) in let left, right = if ordering = U.Gt then newgoal, right else left, newgoal in let neworder = !Utils.compare_terms left right in let time2 = Unix.gettimeofday () in build_newtarget_time := !build_newtarget_time +. (time2 -. time1); let res = let w = Utils.compute_equality_weight eq_ty left right in (w, newproof, (eq_ty, left, right, neworder), [], []) in res in !maxmeta, List.map build_new expansions ;; let sup_r_counter = ref 1;; let superposition_right newmeta (metasenv, context, ugraph) table target = let module C = Cic in let module S = CicSubstitution in let module M = CicMetaSubst in let module HL = HelmLibraryObjects in let module CR = CicReduction in let module U = Utils in let _, eqproof, (eq_ty, left, right, ordering), newmetas, args = target in let metasenv' = metasenv @ newmetas in let maxmeta = ref newmeta in let res1, res2 = match ordering with | U.Gt -> fst (betaexpand_term metasenv' context ugraph table 0 left), [] | U.Lt -> [], fst (betaexpand_term metasenv' context ugraph table 0 right) | _ -> let res l r = List.filter (fun (_, subst, _, _, _) -> let subst = (* M. *)apply_subst subst in let o = !Utils.compare_terms (subst l) (subst r) in o <> U.Lt && o <> U.Le) (fst (betaexpand_term metasenv' context ugraph table 0 l)) in (res left right), (res right left) in let build_new ordering (bo, s, m, ug, (eq_found, eq_URI)) = let time1 = Unix.gettimeofday () in let pos, (_, proof', (ty, what, other, _), menv', args') = eq_found in let what, other = if pos = Utils.Left then what, other else other, what in let newgoal, newproof = let bo' = (* M. *)apply_subst s (S.subst other bo) in let t' = let name = C.Name ("x_SupR_" ^ (string_of_int !sup_r_counter)) in incr sup_r_counter; let l, r = if ordering = U.Gt then bo, S.lift 1 right else S.lift 1 left, bo in (name, ty, S.lift 1 eq_ty, l, r) in let name = C.Name ("x_SupR_" ^ (string_of_int !sup_r_counter)) in incr sup_r_counter; let bo'' = let l, r = if ordering = U.Gt then bo, S.lift 1 right else S.lift 1 left, bo in C.Appl [C.MutInd (LibraryObjects.eq_URI (), 0, []); S.lift 1 eq_ty; l; r] in bo', Inference.ProofBlock ( s, eq_URI, (name, ty), bo''(* t' *), eq_found, eqproof) in let newmeta, newequality = let left, right = if ordering = U.Gt then newgoal, (* M. *)apply_subst s right else (* M. *)apply_subst s left, newgoal in let neworder = !Utils.compare_terms left right and newmenv = newmetas @ menv' and newargs = args @ args' in (* let m = *) (* (Inference.metas_of_term left) @ (Inference.metas_of_term right) in *) (* let a = *) (* List.filter *) (* (function C.Meta (i, _) -> List.mem i m | _ -> assert false) *) (* (args @ args') *) (* in *) (* let delta = (List.length args) - (List.length a) in *) (* if delta > 0 then *) (* let first = List.hd a in *) (* let rec aux l = function *) (* | 0 -> l *) (* | d -> let l = aux l (d-1) in l @ [first] *) (* in *) (* aux a delta *) (* else *) (* a *) (* in *) let eq' = let w = Utils.compute_equality_weight eq_ty left right in (w, newproof, (eq_ty, left, right, neworder), newmenv, newargs) and env = (metasenv, context, ugraph) in let newm, eq' = Inference.fix_metas !maxmeta eq' in newm, eq' in maxmeta := newmeta; let time2 = Unix.gettimeofday () in build_newtarget_time := !build_newtarget_time +. (time2 -. time1); newequality in let new1 = List.map (build_new U.Gt) res1 and new2 = List.map (build_new U.Lt) res2 in (* let ok = function *) (* | _, _, (_, left, right, _), _, _ -> *) (* not (fst (CR.are_convertible context left right ugraph)) *) (* in *) let _ = let env = metasenv, context, ugraph in debug_print (lazy (Printf.sprintf "end of superposition_right:\n%s\n" (String.concat "\n" ((List.map (fun e -> "Positive " ^ (Inference.string_of_equality ~env e)) (new1 @ new2)))))) in let ok e = not (Inference.is_identity (metasenv, context, ugraph) e) in (!maxmeta, (List.filter ok (new1 @ new2))) ;; let rec demodulation_goal newmeta env table goal = let module C = Cic in let module S = CicSubstitution in let module M = CicMetaSubst in let module HL = HelmLibraryObjects in let metasenv, context, ugraph = env in let maxmeta = ref newmeta in let proof, metas, term = goal in let metasenv' = metasenv @ metas in let build_newgoal (t, subst, menv, ug, (eq_found, eq_URI)) = let pos, (_, proof', (ty, what, other, _), menv', args') = eq_found in let what, other = if pos = Utils.Left then what, other else other, what in let ty = try fst (CicTypeChecker.type_of_aux' metasenv context what ugraph) with CicUtil.Meta_not_found _ -> ty in let newterm, newproof = let bo = (* M. *)apply_subst subst (S.subst other t) in let bo' = apply_subst subst t in let name = C.Name ("x_DemodGoal_" ^ (string_of_int !demod_counter)) in incr demod_counter; let metaproof = incr maxmeta; let irl = CicMkImplicit.identity_relocation_list_for_metavariable context in Printf.printf "\nADDING META: %d\n" !maxmeta; print_newline (); C.Meta (!maxmeta, irl) in let eq_found = let proof' = (* let ens = *) (* if pos = Utils.Left then build_ens_for_sym_eq ty what other *) (* else build_ens_for_sym_eq ty other what *) (* in *) let termlist = if pos = Utils.Left then [ty; what; other] else [ty; other; what] in Inference.ProofSymBlock (termlist, proof') in let what, other = if pos = Utils.Left then what, other else other, what in pos, (0, proof', (ty, other, what, Utils.Incomparable), menv', args') in let goal_proof = let pb = Inference.ProofBlock (subst, eq_URI, (name, ty), bo', eq_found, Inference.BasicProof metaproof) in let rec repl = function | Inference.NoProof -> debug_print (lazy "replacing a NoProof"); pb | Inference.BasicProof _ -> debug_print (lazy "replacing a BasicProof"); pb | Inference.ProofGoalBlock (_, parent_proof) -> debug_print (lazy "replacing another ProofGoalBlock"); Inference.ProofGoalBlock (pb, parent_proof) | (Inference.SubProof (term, meta_index, p) as subproof) -> debug_print (lazy (Printf.sprintf "replacing %s" (Inference.string_of_proof subproof))); Inference.SubProof (term, meta_index, repl p) | _ -> assert false in repl proof in bo, Inference.ProofGoalBlock (Inference.NoProof, goal_proof) in let m = Inference.metas_of_term newterm in let newmetasenv = List.filter (fun (i, _, _) -> List.mem i m) metas in !maxmeta, (newproof, newmetasenv, newterm) in let res = demodulation_aux metasenv' context ugraph table 0 term in match res with | Some t -> let newmeta, newgoal = build_newgoal t in let _, _, newg = newgoal in if Inference.meta_convertibility term newg then newmeta, newgoal else demodulation_goal newmeta env table newgoal | None -> newmeta, goal ;; let rec demodulation_theorem newmeta env table theorem = let module C = Cic in let module S = CicSubstitution in let module M = CicMetaSubst in let module HL = HelmLibraryObjects in let metasenv, context, ugraph = env in let maxmeta = ref newmeta in let proof, metas, term = theorem in let term, termty, metas = theorem in let metasenv' = metasenv @ metas in let build_newtheorem (t, subst, menv, ug, (eq_found, eq_URI)) = let pos, (_, proof', (ty, what, other, _), menv', args') = eq_found in let what, other = if pos = Utils.Left then what, other else other, what in let newterm, newty = let bo = apply_subst subst (S.subst other t) in let bo' = apply_subst subst t in let name = C.Name ("x_DemodThm_" ^ (string_of_int !demod_counter)) in incr demod_counter; let newproof = Inference.ProofBlock (subst, eq_URI, (name, ty), bo', eq_found, Inference.BasicProof term) in (Inference.build_proof_term newproof, bo) in let m = Inference.metas_of_term newterm in let newmetasenv = List.filter (fun (i, _, _) -> List.mem i m) metas in !maxmeta, (newterm, newty, newmetasenv) in let res = demodulation_aux metasenv' context ugraph table 0 termty in match res with | Some t -> let newmeta, newthm = build_newtheorem t in let newt, newty, _ = newthm in if Inference.meta_convertibility termty newty then newmeta, newthm else demodulation_theorem newmeta env table newthm | None -> newmeta, theorem ;;