open Inference;; open Utils;; type result = | Failure | Success of Cic.term option * environment ;; (* let symbols_of_equality (_, (_, left, right), _, _) = TermSet.union (symbols_of_term left) (symbols_of_term right) ;; *) let symbols_of_equality ((_, (_, left, right, _), _, _) as equality) = let m1 = symbols_of_term left in let m = TermMap.fold (fun k v res -> try let c = TermMap.find k res in TermMap.add k (c+v) res with Not_found -> TermMap.add k v res) (symbols_of_term right) m1 in (* Printf.printf "symbols_of_equality %s:\n" *) (* (string_of_equality equality); *) (* TermMap.iter (fun k v -> Printf.printf "%s: %d\n" (CicPp.ppterm k) v) m; *) (* print_newline (); *) m ;; module OrderedEquality = struct type t = Inference.equality let compare eq1 eq2 = match meta_convertibility_eq eq1 eq2 with | true -> 0 | false -> let _, (ty, left, right, _), _, _ = eq1 and _, (ty', left', right', _), _, _ = eq2 in let weight_of t = fst (weight_of_term ~consider_metas:false t) in let w1 = (weight_of ty) + (weight_of left) + (weight_of right) and w2 = (weight_of ty') + (weight_of left') + (weight_of right') in match Pervasives.compare w1 w2 with | 0 -> Pervasives.compare eq1 eq2 | res -> res end module EqualitySet = Set.Make(OrderedEquality);; let weight_age_ratio = ref 0;; (* settable by the user from the command line *) let weight_age_counter = ref !weight_age_ratio;; let symbols_ratio = ref 0;; let symbols_counter = ref 0;; let select env passive active = let (neg_list, neg_set), (pos_list, pos_set) = passive in let remove eq l = List.filter (fun e -> not (e = eq)) l in if !weight_age_ratio > 0 then weight_age_counter := !weight_age_counter - 1; match !weight_age_counter with | 0 -> ( weight_age_counter := !weight_age_ratio; match neg_list, pos_list with | hd::tl, pos -> (Negative, hd), ((tl, EqualitySet.remove hd neg_set), (pos, pos_set)) | [], hd::tl -> (Positive, hd), (([], neg_set), (tl, EqualitySet.remove hd pos_set)) | _, _ -> assert false ) | _ when (!symbols_counter > 0) && (EqualitySet.is_empty neg_set) -> ( symbols_counter := !symbols_counter - 1; let cardinality map = TermMap.fold (fun k v res -> res + v) map 0 in match active with | (Negative, e)::_ -> let symbols = symbols_of_equality e in let card = cardinality symbols in let f equality (i, e) = let common, others = TermMap.fold (fun k v (r1, r2) -> if TermMap.mem k symbols then let c = TermMap.find k symbols in let c1 = abs (c - v) in let c2 = v - c1 in r1 + c2, r2 + c1 else r1, r2 + v) (symbols_of_equality equality) (0, 0) in (* Printf.printf "equality: %s, common: %d, others: %d\n" *) (* (string_of_equality ~env equality) common others; *) let c = others + (abs (common - card)) in if c < i then (c, equality) else (i, e) in let e1 = EqualitySet.min_elt pos_set in let initial = let common, others = TermMap.fold (fun k v (r1, r2) -> if TermMap.mem k symbols then let c = TermMap.find k symbols in let c1 = abs (c - v) in let c2 = v - (abs (c - v)) in r1 + c1, r2 + c2 else r1, r2 + v) (symbols_of_equality e1) (0, 0) in (others + (abs (common - card))), e1 in let _, current = EqualitySet.fold f pos_set initial in (* Printf.printf "\nsymbols-based selection: %s\n\n" *) (* (string_of_equality ~env current); *) (Positive, current), (([], neg_set), (remove current pos_list, EqualitySet.remove current pos_set)) | _ -> let current = EqualitySet.min_elt pos_set in let passive = (neg_list, neg_set), (remove current pos_list, EqualitySet.remove current pos_set) in (Positive, current), passive ) | _ -> symbols_counter := !symbols_ratio; let set_selection set = EqualitySet.min_elt set in if EqualitySet.is_empty neg_set then let current = set_selection pos_set in let passive = (neg_list, neg_set), (remove current pos_list, EqualitySet.remove current pos_set) in (Positive, current), passive else let current = set_selection neg_set in let passive = (remove current neg_list, EqualitySet.remove current neg_set), (pos_list, pos_set) in (Negative, current), passive ;; let make_passive neg pos = let set_of equalities = List.fold_left (fun s e -> EqualitySet.add e s) EqualitySet.empty equalities in (neg, set_of neg), (pos, set_of pos) ;; let add_to_passive passive (new_neg, new_pos) = let (neg_list, neg_set), (pos_list, pos_set) = passive in let ok set equality = not (EqualitySet.mem equality set) in let neg = List.filter (ok neg_set) new_neg and pos = List.filter (ok pos_set) new_pos in let add set equalities = List.fold_left (fun s e -> EqualitySet.add e s) set equalities in (neg @ neg_list, add neg_set neg), (pos_list @ pos, add pos_set pos) ;; let passive_is_empty = function | ([], _), ([], _) -> true | _ -> false ;; (* TODO: find a better way! *) let maxmeta = ref 0;; let infer env sign current active = let rec infer_negative current = function | [] -> [], [] | (Negative, _)::tl -> infer_negative current tl | (Positive, equality)::tl -> let res = superposition_left env current equality in let neg, pos = infer_negative current tl in res @ neg, pos and infer_positive current = function | [] -> [], [] | (Negative, equality)::tl -> let res = superposition_left env equality current in let neg, pos = infer_positive current tl in res @ neg, pos | (Positive, equality)::tl -> let maxm, res = superposition_right !maxmeta env current equality in let maxm, res' = superposition_right maxm env equality current in maxmeta := maxm; let neg, pos = infer_positive current tl in (* Printf.printf "risultato di superposition_right: %s %s\n%s\n\n" *) (* (string_of_equality ~env current) (string_of_equality ~env equality) *) (* (String.concat "\n" (List.map (string_of_equality ~env) res)); *) (* Printf.printf "risultato di superposition_right: %s %s\n%s\n\n" *) (* (string_of_equality ~env equality) (string_of_equality ~env current) *) (* (String.concat "\n" (List.map (string_of_equality ~env) res')); *) neg, res @ res' @ pos in match sign with | Negative -> infer_negative current active | Positive -> infer_positive current active ;; let contains_empty env (negative, positive) = let metasenv, context, ugraph = env in try let (proof, _, _, _) = List.find (fun (proof, (ty, left, right, ordering), m, a) -> fst (CicReduction.are_convertible context left right ugraph)) negative in true, Some proof with Not_found -> false, None ;; let forward_simplify env (sign, current) ?passive active = let pn, pp = match passive with | None -> [], [] | Some ((pn, _), (pp, _)) -> (List.map (fun e -> Negative, e) pn), (List.map (fun e -> Positive, e) pp) in let all = active @ pn @ pp in let rec find_duplicate sign current = function | [] -> false | (s, eq)::tl when s = sign -> if meta_convertibility_eq current eq then true else find_duplicate sign current tl | _::tl -> find_duplicate sign current tl in (* let duplicate = find_duplicate sign current all in *) (* if duplicate then *) (* None *) (* else *) let rec aux env (sign, current) = function | [] -> Some (sign, current) | (Negative, _)::tl -> aux env (sign, current) tl | (Positive, equality)::tl -> let newmeta, newcurrent = demodulation !maxmeta env current equality in maxmeta := newmeta; if is_identity env newcurrent then if sign = Negative then Some (sign, current) else None else if newcurrent <> current then aux env (sign, newcurrent) active else aux env (sign, newcurrent) tl in let res = aux env (sign, current) all in match res with | None -> None | Some (s, c) -> if find_duplicate s c all then None else let pred (sign, eq) = if sign <> s then false else subsumption env c eq in if List.exists pred all then None else res ;; let forward_simplify_new env (new_neg, new_pos) ?passive active = let pn, pp = match passive with | None -> [], [] | Some ((pn, _), (pp, _)) -> (List.map (fun e -> Negative, e) pn), (List.map (fun e -> Positive, e) pp) in let all = active @ pn @ pp in let remove_identities equalities = let ok eq = not (is_identity env eq) in List.filter ok equalities in let rec simpl all' target = match all' with | [] -> target | (Negative, _)::tl -> simpl tl target | (Positive, source)::tl -> let newmeta, newtarget = demodulation !maxmeta env target source in maxmeta := newmeta; if is_identity env newtarget then newtarget else if newtarget <> target then ( (* Printf.printf "OK:\n%s\n%s\n" *) (* (string_of_equality ~env target) *) (* (string_of_equality ~env newtarget); *) (* print_newline (); *) simpl all newtarget ) else simpl tl newtarget in let new_neg = List.map (simpl all) new_neg and new_pos = remove_identities (List.map (simpl all) new_pos) in let new_pos_set = List.fold_left (fun s e -> EqualitySet.add e s) EqualitySet.empty new_pos in let new_pos = EqualitySet.elements new_pos_set in let f sign' target (sign, eq) = (* Printf.printf "f %s <%s> (%s, <%s>)\n" *) (* (string_of_sign sign') (string_of_equality ~env target) *) (* (string_of_sign sign) (string_of_equality ~env eq); *) if sign <> sign' then false else subsumption env target eq in (* new_neg, new_pos *) (List.filter (fun e -> not (List.exists (f Negative e) all)) new_neg, List.filter (fun e -> not (List.exists (f Positive e) all)) new_pos) ;; let backward_simplify_active env (new_neg, new_pos) active = let new_pos = List.map (fun e -> Positive, e) new_pos in let active, newa = List.fold_right (fun (s, equality) (res, newn) -> match forward_simplify env (s, equality) new_pos with | None when s = Negative -> Printf.printf "\nECCO QUI: %s\n" (string_of_equality ~env equality); print_newline (); res, newn | None -> res, newn | Some (s, e) -> if equality = e then (s, e)::res, newn else res, (s, e)::newn) active ([], []) in let find eq1 where = List.exists (fun (s, e) -> meta_convertibility_eq eq1 e) where in let active, newa = let f (s, eq) res = if (is_identity env eq) || (find eq res) then res else (s, eq)::res in List.fold_right (fun (s, eq) res -> if (is_identity env eq) || (find eq res) then res else (s, eq)::res) active [], List.fold_right (fun (s, eq) (n, p) -> if (s <> Negative) && (is_identity env eq) then (n, p) else if s = Negative then eq::n, p else n, eq::p) newa ([], []) in match newa with | [], [] -> active, None | _ -> active, Some newa ;; let backward_simplify_passive env (new_neg, new_pos) passive = let new_pos = List.map (fun e -> Positive, e) new_pos in let (nl, ns), (pl, ps) = passive in let f sign equality (resl, ress, newn) = match forward_simplify env (sign, equality) new_pos with | None -> resl, EqualitySet.remove equality ress, newn | Some (s, e) -> if equality = e then equality::resl, ress, newn else let ress = EqualitySet.remove equality ress in resl, ress, e::newn in let nl, ns, newn = List.fold_right (f Negative) nl ([], ns, []) and pl, ps, newp = List.fold_right (f Positive) pl ([], ps, []) in match newn, newp with | [], [] -> ((nl, ns), (pl, ps)), None | _, _ -> ((nl, ns), (pl, ps)), Some (newn, newp) ;; let backward_simplify env new' ?passive active = let active, newa = backward_simplify_active env new' active in match passive with | None -> active, (([], EqualitySet.empty), ([], EqualitySet.empty)), newa, None | Some passive -> let passive, newp = backward_simplify_passive env new' passive in active, passive, newa, newp ;; let rec given_clause env passive active = match passive_is_empty passive with | true -> Failure | false -> (* Printf.printf "before select\n"; *) let (sign, current), passive = select env passive active in (* Printf.printf "before simplification: sign: %s\ncurrent: %s\n\n" *) (* (string_of_sign sign) (string_of_equality ~env current); *) match forward_simplify env (sign, current) ~passive active with (* | None when sign = Negative -> *) (* Printf.printf "OK!!! %s %s" (string_of_sign sign) *) (* (string_of_equality ~env current); *) (* print_newline (); *) (* let proof, _, _, _ = current in *) (* Success (Some proof, env) *) | None -> (* Printf.printf "avanti... %s %s" (string_of_sign sign) *) (* (string_of_equality ~env current); *) (* print_newline (); *) given_clause env passive active | Some (sign, current) -> if (sign = Negative) && (is_identity env current) then ( Printf.printf "OK!!! %s %s" (string_of_sign sign) (string_of_equality ~env current); print_newline (); let proof, _, _, _ = current in Success (Some proof, env) ) else ( print_endline "\n================================================"; Printf.printf "selected: %s %s" (string_of_sign sign) (string_of_equality ~env current); print_newline (); let new' = infer env sign current active in let res, proof = contains_empty env new' in if res then Success (proof, env) else let new' = forward_simplify_new env new' active in let active = match sign with | Negative -> active | Positive -> let active, _, newa, _ = backward_simplify env ([], [current]) active in match newa with | None -> active | Some (n, p) -> let nn = List.map (fun e -> Negative, e) n and pp = List.map (fun e -> Positive, e) p in nn @ active @ pp in let _ = Printf.printf "active:\n%s\n" (String.concat "\n" ((List.map (fun (s, e) -> (string_of_sign s) ^ " " ^ (string_of_equality ~env e)) active))); print_newline (); in let _ = match new' with | neg, pos -> Printf.printf "new':\n%s\n" (String.concat "\n" ((List.map (fun e -> "Negative " ^ (string_of_equality ~env e)) neg) @ (List.map (fun e -> "Positive " ^ (string_of_equality ~env e)) pos))); print_newline (); in match contains_empty env new' with | false, _ -> let active = match sign with | Negative -> (sign, current)::active | Positive -> active @ [(sign, current)] in let passive = add_to_passive passive new' in let (_, ns), (_, ps) = passive in Printf.printf "passive:\n%s\n" (String.concat "\n" ((List.map (fun e -> "Negative " ^ (string_of_equality ~env e)) (EqualitySet.elements ns)) @ (List.map (fun e -> "Positive " ^ (string_of_equality ~env e)) (EqualitySet.elements ps)))); print_newline (); given_clause env passive active | true, proof -> Success (proof, env) ) ;; let rec given_clause_fullred env passive active = match passive_is_empty passive with | true -> Failure | false -> (* Printf.printf "before select\n"; *) let (sign, current), passive = select env passive active in (* Printf.printf "before simplification: sign: %s\ncurrent: %s\n\n" *) (* (string_of_sign sign) (string_of_equality ~env current); *) match forward_simplify env (sign, current) ~passive active with | None -> given_clause_fullred env passive active | Some (sign, current) -> if (sign = Negative) && (is_identity env current) then ( Printf.printf "OK!!! %s %s" (string_of_sign sign) (string_of_equality ~env current); print_newline (); let proof, _, _, _ = current in Success (Some proof, env) ) else ( print_endline "\n================================================"; Printf.printf "selected: %s %s" (string_of_sign sign) (string_of_equality ~env current); print_newline (); let new' = infer env sign current active in let active = if is_identity env current then active else match sign with | Negative -> (sign, current)::active | Positive -> active @ [(sign, current)] in (* let _ = *) (* match new' with *) (* | neg, pos -> *) (* Printf.printf "new' before simpl:\n%s\n" *) (* (String.concat "\n" *) (* ((List.map *) (* (fun e -> "Negative " ^ *) (* (string_of_equality ~env e)) neg) @ *) (* (List.map *) (* (fun e -> "Positive " ^ *) (* (string_of_equality ~env e)) pos))); *) (* print_newline (); *) (* in *) let rec simplify new' active passive = let new' = forward_simplify_new env new' ~passive active in let active, passive, newa, retained = backward_simplify env new' ~passive active in match newa, retained with | None, None -> active, passive, new' | Some (n, p), None | None, Some (n, p) -> let nn, np = new' in simplify (nn @ n, np @ p) active passive | Some (n, p), Some (rn, rp) -> let nn, np = new' in simplify (nn @ n @ rn, np @ p @ rp) active passive in let active, passive, new' = simplify new' active passive in let _ = Printf.printf "active:\n%s\n" (String.concat "\n" ((List.map (fun (s, e) -> (string_of_sign s) ^ " " ^ (string_of_equality ~env e)) active))); print_newline (); in let _ = match new' with | neg, pos -> Printf.printf "new':\n%s\n" (String.concat "\n" ((List.map (fun e -> "Negative " ^ (string_of_equality ~env e)) neg) @ (List.map (fun e -> "Positive " ^ (string_of_equality ~env e)) pos))); print_newline (); in match contains_empty env new' with | false, _ -> let passive = add_to_passive passive new' in (* let (_, ns), (_, ps) = passive in *) (* Printf.printf "passive:\n%s\n" *) (* (String.concat "\n" *) (* ((List.map (fun e -> "Negative " ^ *) (* (string_of_equality ~env e)) *) (* (EqualitySet.elements ns)) @ *) (* (List.map (fun e -> "Positive " ^ *) (* (string_of_equality ~env e)) *) (* (EqualitySet.elements ps)))); *) (* print_newline (); *) given_clause_fullred env passive active | true, proof -> Success (proof, env) ) ;; let get_from_user () = let dbd = Mysql.quick_connect ~host:"localhost" ~user:"helm" ~database:"mowgli" () in let rec get () = match read_line () with | "" -> [] | t -> t::(get ()) in let term_string = String.concat "\n" (get ()) in let env, metasenv, term, ugraph = List.nth (Disambiguate.Trivial.disambiguate_string dbd term_string) 0 in term, metasenv, ugraph ;; let given_clause_ref = ref given_clause;; let main () = let module C = Cic in let module T = CicTypeChecker in let module PET = ProofEngineTypes in let module PP = CicPp in let term, metasenv, ugraph = get_from_user () in let proof = None, (1, [], term)::metasenv, C.Meta (1, []), term in let proof, goals = PET.apply_tactic (PrimitiveTactics.intros_tac ()) (proof, 1) in let goal = List.nth goals 0 in let _, metasenv, meta_proof, _ = proof in let _, context, goal = CicUtil.lookup_meta goal metasenv in let equalities, maxm = find_equalities context proof in maxmeta := maxm; (* TODO ugly!! *) let env = (metasenv, context, ugraph) in try let term_equality = equality_of_term meta_proof goal in let meta_proof, (eq_ty, left, right, ordering), _, _ = term_equality in let active = [] in let passive = make_passive [term_equality] equalities in Printf.printf "\ncurrent goal: %s\n" (string_of_equality ~env term_equality); Printf.printf "\ncontext:\n%s\n" (PP.ppcontext context); Printf.printf "\nmetasenv:\n%s\n" (print_metasenv metasenv); Printf.printf "\nequalities:\n%s\n" (String.concat "\n" (List.map (string_of_equality ~env) equalities)); print_endline "--------------------------------------------------"; let start = Unix.gettimeofday () in print_endline "GO!"; let res = !given_clause_ref env passive active in let finish = Unix.gettimeofday () in match res with | Failure -> Printf.printf "NO proof found! :-(\n\n" | Success (Some proof, env) -> Printf.printf "OK, found a proof!:\n%s\n%.9f\n" (PP.ppterm proof) (finish -. start); | Success (None, env) -> Printf.printf "Success, but no proof?!?\n\n" with exc -> print_endline ("EXCEPTION: " ^ (Printexc.to_string exc)); ;; let configuration_file = ref "../../gTopLevel/gTopLevel.conf.xml";; let _ = let set_ratio v = weight_age_ratio := (v+1); weight_age_counter := (v+1) and set_sel v = symbols_ratio := v; symbols_counter := v; and set_conf f = configuration_file := f and set_lpo () = Utils.compare_terms := lpo and set_kbo () = Utils.compare_terms := nonrec_kbo and set_fullred () = given_clause_ref := given_clause_fullred in Arg.parse [ "-f", Arg.Unit set_fullred, "Use full-reduction strategy"; "-r", Arg.Int set_ratio, "Weight-Age equality selection ratio (default: 0)"; "-s", Arg.Int set_sel, "symbols-based selection ratio (relative to the weight ratio)"; "-c", Arg.String set_conf, "Configuration file (for the db connection)"; "-lpo", Arg.Unit set_lpo, "Use lpo term ordering"; "-kbo", Arg.Unit set_kbo, "Use (non-recursive) kbo term ordering (default)"; ] (fun a -> ()) "Usage:" in Helm_registry.load_from !configuration_file; main ()