open Inference;; open Utils;; (* set to false to disable paramodulation inside auto_tac *) let connect_to_auto = true;; (* profiling statistics... *) let infer_time = ref 0.;; let forward_simpl_time = ref 0.;; let forward_simpl_new_time = ref 0.;; let backward_simpl_time = ref 0.;; let passive_maintainance_time = ref 0.;; (* limited-resource-strategy related globals *) let processed_clauses = ref 0;; (* number of equalities selected so far... *) let time_limit = ref 0.;; (* in seconds, settable by the user... *) let start_time = ref 0.;; (* time at which the execution started *) let elapsed_time = ref 0.;; (* let maximal_weight = ref None;; *) let maximal_retained_equality = ref None;; (* equality-selection related globals *) let use_fullred = ref true;; let weight_age_ratio = ref (* 5 *) 4;; (* settable by the user *) let weight_age_counter = ref !weight_age_ratio;; let symbols_ratio = ref (* 0 *) 3;; let symbols_counter = ref 0;; (* non-recursive Knuth-Bendix term ordering by default *) Utils.compare_terms := Utils.nonrec_kbo;; (* statistics... *) let derived_clauses = ref 0;; let kept_clauses = ref 0;; (* index of the greatest Cic.Meta created - TODO: find a better way! *) let maxmeta = ref 0;; (* varbiables controlling the search-space *) let maxdepth = ref 3;; let maxwidth = ref 3;; type result = | ParamodulationFailure | ParamodulationSuccess of Inference.proof option * environment ;; (* let symbols_of_equality (_, (_, left, right), _, _) = TermSet.union (symbols_of_term left) (symbols_of_term right) ;; *) let symbols_of_equality ((_, _, (_, left, right, _), _, _) as equality) = let m1 = symbols_of_term left in let m = TermMap.fold (fun k v res -> try let c = TermMap.find k res in TermMap.add k (c+v) res with Not_found -> TermMap.add k v res) (symbols_of_term right) m1 in (* Printf.printf "symbols_of_equality %s:\n" *) (* (string_of_equality equality); *) (* TermMap.iter (fun k v -> Printf.printf "%s: %d\n" (CicPp.ppterm k) v) m; *) (* print_newline (); *) m ;; module OrderedEquality = struct type t = Inference.equality let compare eq1 eq2 = match meta_convertibility_eq eq1 eq2 with | true -> 0 | false -> let w1, _, (ty, left, right, _), _, a = eq1 and w2, _, (ty', left', right', _), _, a' = eq2 in (* let weight_of t = fst (weight_of_term ~consider_metas:false t) in *) (* let w1 = (weight_of ty) + (weight_of left) + (weight_of right) *) (* and w2 = (weight_of ty') + (weight_of left') + (weight_of right') in *) match Pervasives.compare w1 w2 with | 0 -> let res = (List.length a) - (List.length a') in if res <> 0 then res else ( try let res = Pervasives.compare (List.hd a) (List.hd a') in if res <> 0 then res else Pervasives.compare eq1 eq2 with Failure "hd" -> Pervasives.compare eq1 eq2 (* match a, a' with *) (* | (Cic.Meta (i, _)::_), (Cic.Meta (j, _)::_) -> *) (* let res = Pervasives.compare i j in *) (* if res <> 0 then res else Pervasives.compare eq1 eq2 *) (* | _, _ -> Pervasives.compare eq1 eq2 *) ) | res -> res end module EqualitySet = Set.Make(OrderedEquality);; let select env goals passive (active, _) = processed_clauses := !processed_clauses + 1; let goal = match (List.rev goals) with (_, goal::_)::_ -> goal | _ -> assert false in let (neg_list, neg_set), (pos_list, pos_set), passive_table = passive in let remove eq l = List.filter (fun e -> e <> eq) l in if !weight_age_ratio > 0 then weight_age_counter := !weight_age_counter - 1; match !weight_age_counter with | 0 -> ( weight_age_counter := !weight_age_ratio; match neg_list, pos_list with | hd::tl, pos -> (* Negatives aren't indexed, no need to remove them... *) (Negative, hd), ((tl, EqualitySet.remove hd neg_set), (pos, pos_set), passive_table) | [], hd::tl -> let passive_table = Indexing.remove_index passive_table hd (* if !use_fullred then Indexing.remove_index passive_table hd *) (* else passive_table *) in (Positive, hd), (([], neg_set), (tl, EqualitySet.remove hd pos_set), passive_table) | _, _ -> assert false ) | _ when (!symbols_counter > 0) && (EqualitySet.is_empty neg_set) -> ( symbols_counter := !symbols_counter - 1; let cardinality map = TermMap.fold (fun k v res -> res + v) map 0 in (* match active with *) (* | (Negative, e)::_ -> *) (* let symbols = symbols_of_equality e in *) let symbols = let _, _, term = goal in symbols_of_term term in let card = cardinality symbols in let foldfun k v (r1, r2) = if TermMap.mem k symbols then let c = TermMap.find k symbols in let c1 = abs (c - v) in let c2 = v - c1 in r1 + c2, r2 + c1 else r1, r2 + v in let f equality (i, e) = let common, others = TermMap.fold foldfun (symbols_of_equality equality) (0, 0) in let c = others + (abs (common - card)) in if c < i then (c, equality) (* else if c = i then *) (* match OrderedEquality.compare equality e with *) (* | -1 -> (c, equality) *) (* | res -> (i, e) *) else (i, e) in let e1 = EqualitySet.min_elt pos_set in let initial = let common, others = TermMap.fold foldfun (symbols_of_equality e1) (0, 0) in (others + (abs (common - card))), e1 in let _, current = EqualitySet.fold f pos_set initial in (* Printf.printf "\nsymbols-based selection: %s\n\n" *) (* (string_of_equality ~env current); *) let passive_table = Indexing.remove_index passive_table current (* if !use_fullred then Indexing.remove_index passive_table current *) (* else passive_table *) in (Positive, current), (([], neg_set), (remove current pos_list, EqualitySet.remove current pos_set), passive_table) (* | _ -> *) (* let current = EqualitySet.min_elt pos_set in *) (* let passive_table = *) (* Indexing.remove_index passive_table current *) (* (\* if !use_fullred then Indexing.remove_index passive_table current *\) *) (* (\* else passive_table *\) *) (* in *) (* let passive = *) (* (neg_list, neg_set), *) (* (remove current pos_list, EqualitySet.remove current pos_set), *) (* passive_table *) (* in *) (* (Positive, current), passive *) ) | _ -> symbols_counter := !symbols_ratio; let set_selection set = EqualitySet.min_elt set in if EqualitySet.is_empty neg_set then let current = set_selection pos_set in let passive = (neg_list, neg_set), (remove current pos_list, EqualitySet.remove current pos_set), Indexing.remove_index passive_table current (* if !use_fullred then Indexing.remove_index passive_table current *) (* else passive_table *) in (Positive, current), passive else let current = set_selection neg_set in let passive = (remove current neg_list, EqualitySet.remove current neg_set), (pos_list, pos_set), passive_table in (Negative, current), passive ;; let make_passive neg pos = let set_of equalities = List.fold_left (fun s e -> EqualitySet.add e s) EqualitySet.empty equalities in let table = List.fold_left (fun tbl e -> Indexing.index tbl e) (Indexing.empty_table ()) pos (* if !use_fullred then *) (* List.fold_left (fun tbl e -> Indexing.index tbl e) *) (* (Indexing.empty_table ()) pos *) (* else *) (* Indexing.empty_table () *) in (neg, set_of neg), (pos, set_of pos), table ;; let make_active () = [], Indexing.empty_table () ;; let add_to_passive passive (new_neg, new_pos) = let (neg_list, neg_set), (pos_list, pos_set), table = passive in let ok set equality = not (EqualitySet.mem equality set) in let neg = List.filter (ok neg_set) new_neg and pos = List.filter (ok pos_set) new_pos in let table = List.fold_left (fun tbl e -> Indexing.index tbl e) table pos (* if !use_fullred then *) (* List.fold_left (fun tbl e -> Indexing.index tbl e) table pos *) (* else *) (* table *) in let add set equalities = List.fold_left (fun s e -> EqualitySet.add e s) set equalities in (neg @ neg_list, add neg_set neg), (pos_list @ pos, add pos_set pos), table ;; let passive_is_empty = function | ([], _), ([], _), _ -> true | _ -> false ;; let size_of_passive ((_, ns), (_, ps), _) = (EqualitySet.cardinal ns) + (EqualitySet.cardinal ps) ;; let size_of_active (active_list, _) = List.length active_list ;; let prune_passive howmany (active, _) passive = let (nl, ns), (pl, ps), tbl = passive in let howmany = float_of_int howmany and ratio = float_of_int !weight_age_ratio in let round v = let t = ceil v in int_of_float (if t -. v < 0.5 then t else v) in let in_weight = round (howmany *. ratio /. (ratio +. 1.)) and in_age = round (howmany /. (ratio +. 1.)) in debug_print (lazy (Printf.sprintf "in_weight: %d, in_age: %d\n" in_weight in_age)); let symbols, card = match active with | (Negative, e)::_ -> let symbols = symbols_of_equality e in let card = TermMap.fold (fun k v res -> res + v) symbols 0 in Some symbols, card | _ -> None, 0 in let counter = ref !symbols_ratio in let rec pickw w ns ps = if w > 0 then if not (EqualitySet.is_empty ns) then let e = EqualitySet.min_elt ns in let ns', ps = pickw (w-1) (EqualitySet.remove e ns) ps in EqualitySet.add e ns', ps else if !counter > 0 then let _ = counter := !counter - 1; if !counter = 0 then counter := !symbols_ratio in match symbols with | None -> let e = EqualitySet.min_elt ps in let ns, ps' = pickw (w-1) ns (EqualitySet.remove e ps) in ns, EqualitySet.add e ps' | Some symbols -> let foldfun k v (r1, r2) = if TermMap.mem k symbols then let c = TermMap.find k symbols in let c1 = abs (c - v) in let c2 = v - c1 in r1 + c2, r2 + c1 else r1, r2 + v in let f equality (i, e) = let common, others = TermMap.fold foldfun (symbols_of_equality equality) (0, 0) in let c = others + (abs (common - card)) in if c < i then (c, equality) else (i, e) in let e1 = EqualitySet.min_elt ps in let initial = let common, others = TermMap.fold foldfun (symbols_of_equality e1) (0, 0) in (others + (abs (common - card))), e1 in let _, e = EqualitySet.fold f ps initial in let ns, ps' = pickw (w-1) ns (EqualitySet.remove e ps) in ns, EqualitySet.add e ps' else let e = EqualitySet.min_elt ps in let ns, ps' = pickw (w-1) ns (EqualitySet.remove e ps) in ns, EqualitySet.add e ps' else EqualitySet.empty, EqualitySet.empty in (* let in_weight, ns = pickw in_weight ns in *) (* let _, ps = pickw in_weight ps in *) let ns, ps = pickw in_weight ns ps in let rec picka w s l = if w > 0 then match l with | [] -> w, s, [] | hd::tl when not (EqualitySet.mem hd s) -> let w, s, l = picka (w-1) s tl in w, EqualitySet.add hd s, hd::l | hd::tl -> let w, s, l = picka w s tl in w, s, hd::l else 0, s, l in let in_age, ns, nl = picka in_age ns nl in let _, ps, pl = picka in_age ps pl in if not (EqualitySet.is_empty ps) then (* maximal_weight := Some (weight_of_equality (EqualitySet.max_elt ps)); *) maximal_retained_equality := Some (EqualitySet.max_elt ps); let tbl = EqualitySet.fold (fun e tbl -> Indexing.index tbl e) ps (Indexing.empty_table ()) (* if !use_fullred then *) (* EqualitySet.fold *) (* (fun e tbl -> Indexing.index tbl e) ps (Indexing.empty_table ()) *) (* else *) (* tbl *) in (nl, ns), (pl, ps), tbl ;; let infer env sign current (active_list, active_table) = let new_neg, new_pos = match sign with | Negative -> let maxm, res = Indexing.superposition_left !maxmeta env active_table current in maxmeta := maxm; res, [] | Positive -> let maxm, res = Indexing.superposition_right !maxmeta env active_table current in maxmeta := maxm; let rec infer_positive table = function | [] -> [], [] | (Negative, equality)::tl -> let maxm, res = Indexing.superposition_left !maxmeta env table equality in maxmeta := maxm; let neg, pos = infer_positive table tl in res @ neg, pos | (Positive, equality)::tl -> let maxm, res = Indexing.superposition_right !maxmeta env table equality in maxmeta := maxm; let neg, pos = infer_positive table tl in neg, res @ pos in let curr_table = Indexing.index (Indexing.empty_table ()) current in let neg, pos = infer_positive curr_table active_list in neg, res @ pos in derived_clauses := !derived_clauses + (List.length new_neg) + (List.length new_pos); match !maximal_retained_equality with | None -> new_neg, new_pos | Some eq -> (* if we have a maximal_retained_equality, we can discard all equalities "greater" than it, as they will never be reached... An equality is greater than maximal_retained_equality if it is bigger wrt. OrderedEquality.compare and it is less similar than maximal_retained_equality to the current goal *) let symbols, card = match active_list with | (Negative, e)::_ -> let symbols = symbols_of_equality e in let card = TermMap.fold (fun k v res -> res + v) symbols 0 in Some symbols, card | _ -> None, 0 in let new_pos = match symbols with | None -> List.filter (fun e -> OrderedEquality.compare e eq <= 0) new_pos | Some symbols -> let filterfun e = if OrderedEquality.compare e eq <= 0 then true else let foldfun k v (r1, r2) = if TermMap.mem k symbols then let c = TermMap.find k symbols in let c1 = abs (c - v) in let c2 = v - c1 in r1 + c2, r2 + c1 else r1, r2 + v in let initial = let common, others = TermMap.fold foldfun (symbols_of_equality eq) (0, 0) in others + (abs (common - card)) in let common, others = TermMap.fold foldfun (symbols_of_equality e) (0, 0) in let c = others + (abs (common - card)) in if c < initial then true else false in List.filter filterfun new_pos in new_neg, new_pos ;; let contains_empty env (negative, positive) = let metasenv, context, ugraph = env in try let found = List.find (fun (w, proof, (ty, left, right, ordering), m, a) -> fst (CicReduction.are_convertible context left right ugraph)) negative in true, Some found with Not_found -> false, None ;; let forward_simplify env (sign, current) ?passive (active_list, active_table) = let pl, passive_table = match passive with | None -> [], None | Some ((pn, _), (pp, _), pt) -> let pn = List.map (fun e -> (Negative, e)) pn and pp = List.map (fun e -> (Positive, e)) pp in pn @ pp, Some pt in let all = if pl = [] then active_list else active_list @ pl in (* let rec find_duplicate sign current = function *) (* | [] -> false *) (* | (s, eq)::tl when s = sign -> *) (* if meta_convertibility_eq current eq then true *) (* else find_duplicate sign current tl *) (* | _::tl -> find_duplicate sign current tl *) (* in *) (* let res = *) (* if sign = Positive then *) (* Indexing.subsumption env active_table current *) (* else *) (* false *) (* in *) (* if res then *) (* None *) (* else *) let demodulate table current = let newmeta, newcurrent = Indexing.demodulation_equality !maxmeta env table sign current in maxmeta := newmeta; if is_identity env newcurrent then if sign = Negative then Some (sign, newcurrent) else None else Some (sign, newcurrent) in let res = let res = demodulate active_table current in match res with | None -> None | Some (sign, newcurrent) -> match passive_table with | None -> res | Some passive_table -> demodulate passive_table newcurrent in match res with | None -> None | Some (Negative, c) -> let ok = not ( List.exists (fun (s, eq) -> s = Negative && meta_convertibility_eq eq c) all) in if ok then res else None | Some (Positive, c) -> if Indexing.in_index active_table c then None else match passive_table with | None -> res | Some passive_table -> if Indexing.in_index passive_table c then None else res (* | Some (s, c) -> if find_duplicate s c all then None else res *) (* if s = Utils.Negative then *) (* res *) (* else *) (* if Indexing.subsumption env active_table c then *) (* None *) (* else ( *) (* match passive_table with *) (* | None -> res *) (* | Some passive_table -> *) (* if Indexing.subsumption env passive_table c then *) (* None *) (* else *) (* res *) (* ) *) (* let pred (sign, eq) = *) (* if sign <> s then false *) (* else subsumption env c eq *) (* in *) (* if List.exists pred all then None *) (* else res *) ;; type fs_time_info_t = { mutable build_all: float; mutable demodulate: float; mutable subsumption: float; };; let fs_time_info = { build_all = 0.; demodulate = 0.; subsumption = 0. };; let forward_simplify_new env (new_neg, new_pos) ?passive active = let t1 = Unix.gettimeofday () in let active_list, active_table = active in let pl, passive_table = match passive with | None -> [], None | Some ((pn, _), (pp, _), pt) -> let pn = List.map (fun e -> (Negative, e)) pn and pp = List.map (fun e -> (Positive, e)) pp in pn @ pp, Some pt in let all = active_list @ pl in let t2 = Unix.gettimeofday () in fs_time_info.build_all <- fs_time_info.build_all +. (t2 -. t1); let demodulate sign table target = let newmeta, newtarget = Indexing.demodulation_equality !maxmeta env table sign target in maxmeta := newmeta; newtarget in (* let f sign' target (sign, eq) = *) (* if sign <> sign' then false *) (* else subsumption env target eq *) (* in *) let t1 = Unix.gettimeofday () in let new_neg, new_pos = let new_neg = List.map (demodulate Negative active_table) new_neg and new_pos = List.map (demodulate Positive active_table) new_pos in match passive_table with | None -> new_neg, new_pos | Some passive_table -> List.map (demodulate Negative passive_table) new_neg, List.map (demodulate Positive passive_table) new_pos in let t2 = Unix.gettimeofday () in fs_time_info.demodulate <- fs_time_info.demodulate +. (t2 -. t1); let new_pos_set = List.fold_left (fun s e -> if not (Inference.is_identity env e) then if EqualitySet.mem e s then s else EqualitySet.add e s else s) EqualitySet.empty new_pos in let new_pos = EqualitySet.elements new_pos_set in let subs = match passive_table with | None -> (fun e -> not (fst (Indexing.subsumption env active_table e))) | Some passive_table -> (fun e -> not ((fst (Indexing.subsumption env active_table e)) || (fst (Indexing.subsumption env passive_table e)))) in let t1 = Unix.gettimeofday () in (* let new_neg, new_pos = *) (* List.filter subs new_neg, *) (* List.filter subs new_pos *) (* in *) (* let new_neg, new_pos = *) (* (List.filter (fun e -> not (List.exists (f Negative e) all)) new_neg, *) (* List.filter (fun e -> not (List.exists (f Positive e) all)) new_pos) *) (* in *) let t2 = Unix.gettimeofday () in fs_time_info.subsumption <- fs_time_info.subsumption +. (t2 -. t1); let is_duplicate = match passive_table with | None -> (fun e -> not (Indexing.in_index active_table e)) | Some passive_table -> (fun e -> not ((Indexing.in_index active_table e) || (Indexing.in_index passive_table e))) in new_neg, List.filter is_duplicate new_pos (* new_neg, new_pos *) (* let res = *) (* (List.filter (fun e -> not (List.exists (f Negative e) all)) new_neg, *) (* List.filter (fun e -> not (List.exists (f Positive e) all)) new_pos) *) (* in *) (* res *) ;; let backward_simplify_active env new_pos new_table min_weight active = let active_list, active_table = active in let active_list, newa = List.fold_right (fun (s, equality) (res, newn) -> let ew, _, _, _, _ = equality in if ew < min_weight then (s, equality)::res, newn else match forward_simplify env (s, equality) (new_pos, new_table) with | None -> res, newn | Some (s, e) -> if equality = e then (s, e)::res, newn else res, (s, e)::newn) active_list ([], []) in let find eq1 where = List.exists (fun (s, e) -> meta_convertibility_eq eq1 e) where in let active, newa = List.fold_right (fun (s, eq) (res, tbl) -> if List.mem (s, eq) res then res, tbl else if (is_identity env eq) || (find eq res) then ( res, tbl ) (* else if (find eq res) then *) (* res, tbl *) else (s, eq)::res, if s = Negative then tbl else Indexing.index tbl eq) active_list ([], Indexing.empty_table ()), List.fold_right (fun (s, eq) (n, p) -> if (s <> Negative) && (is_identity env eq) then ( (n, p) ) else if s = Negative then eq::n, p else n, eq::p) newa ([], []) in match newa with | [], [] -> active, None | _ -> active, Some newa ;; let backward_simplify_passive env new_pos new_table min_weight passive = let (nl, ns), (pl, ps), passive_table = passive in let f sign equality (resl, ress, newn) = let ew, _, _, _, _ = equality in if ew < min_weight then (* let _ = debug_print (lazy (Printf.sprintf "OK: %d %d" ew min_weight)) in *) equality::resl, ress, newn else match forward_simplify env (sign, equality) (new_pos, new_table) with | None -> resl, EqualitySet.remove equality ress, newn | Some (s, e) -> if equality = e then equality::resl, ress, newn else let ress = EqualitySet.remove equality ress in resl, ress, e::newn in let nl, ns, newn = List.fold_right (f Negative) nl ([], ns, []) and pl, ps, newp = List.fold_right (f Positive) pl ([], ps, []) in let passive_table = List.fold_left (fun tbl e -> Indexing.index tbl e) (Indexing.empty_table ()) pl in match newn, newp with | [], [] -> ((nl, ns), (pl, ps), passive_table), None | _, _ -> ((nl, ns), (pl, ps), passive_table), Some (newn, newp) ;; let backward_simplify env new' ?passive active = let new_pos, new_table, min_weight = List.fold_left (fun (l, t, w) e -> let ew, _, _, _, _ = e in (Positive, e)::l, Indexing.index t e, min ew w) ([], Indexing.empty_table (), 1000000) (snd new') in let active, newa = backward_simplify_active env new_pos new_table min_weight active in match passive with | None -> active, (make_passive [] []), newa, None | Some passive -> let passive, newp = backward_simplify_passive env new_pos new_table min_weight passive in active, passive, newa, newp ;; let get_selection_estimate () = elapsed_time := (Unix.gettimeofday ()) -. !start_time; (* !processed_clauses * (int_of_float (!time_limit /. !elapsed_time)) *) int_of_float ( ceil ((float_of_int !processed_clauses) *. ((!time_limit (* *. 2. *)) /. !elapsed_time -. 1.))) ;; let simplify_goal env goal ?passive (active_list, active_table) = let pl, passive_table = match passive with | None -> [], None | Some ((pn, _), (pp, _), pt) -> let pn = List.map (fun e -> (Negative, e)) pn and pp = List.map (fun e -> (Positive, e)) pp in pn @ pp, Some pt in let all = if pl = [] then active_list else active_list @ pl in let demodulate table goal = let newmeta, newgoal = Indexing.demodulation_goal !maxmeta env table goal in maxmeta := newmeta; newgoal in let goal = match passive_table with | None -> demodulate active_table goal | Some passive_table -> let goal = demodulate active_table goal in demodulate passive_table goal in let _ = let p, _, t = goal in debug_print (lazy (Printf.sprintf "Goal after demodulation: %s, %s" (string_of_proof p) (CicPp.ppterm t))) in goal ;; let simplify_goals env goals ?passive active = List.map (fun (d, gl) -> let gl = List.map (fun g -> simplify_goal env g ?passive active) gl in d, gl) goals ;; let simplify_theorems env theorems ?passive (active_list, active_table) = let pl, passive_table = match passive with | None -> [], None | Some ((pn, _), (pp, _), pt) -> let pn = List.map (fun e -> (Negative, e)) pn and pp = List.map (fun e -> (Positive, e)) pp in pn @ pp, Some pt in let all = if pl = [] then active_list else active_list @ pl in let demodulate table theorem = let newmeta, newthm = Indexing.demodulation_theorem !maxmeta env table theorem in maxmeta := newmeta; newthm in match passive_table with | None -> List.map (demodulate active_table) theorems | Some passive_table -> let theorems = List.map (demodulate active_table) theorems in List.map (demodulate passive_table) theorems ;; let apply_equality_to_goal env equality goal = let module C = Cic in let module HL = HelmLibraryObjects in let module I = Inference in let metasenv, context, ugraph = env in let _, proof, (ty, left, right, _), metas, args = equality in let eqterm = C.Appl [C.MutInd (LibraryObjects.eq_URI (), 0, []); ty; left; right] in let gproof, gmetas, gterm = goal in try let subst, metasenv', _ = let menv = metasenv @ metas @ gmetas in Inference.unification menv context eqterm gterm ugraph in let newproof = match proof with | I.BasicProof t -> I.BasicProof (CicMetaSubst.apply_subst subst t) | I.ProofBlock (s, uri, nt, t, pe, p) -> I.ProofBlock (subst @ s, uri, nt, t, pe, p) | _ -> assert false in let newgproof = let rec repl = function | I.ProofGoalBlock (_, gp) -> I.ProofGoalBlock (newproof, gp) | I.NoProof -> newproof | I.BasicProof p -> newproof | I.SubProof (t, i, p) -> I.SubProof (t, i, repl p) | _ -> assert false in repl gproof in true, subst, newgproof with CicUnification.UnificationFailure _ -> false, [], I.NoProof ;; (* let apply_to_goal env theorems active (depth, goals) = let _ = debug_print ("apply_to_goal: " ^ (string_of_int (List.length goals))) in let metasenv, context, ugraph = env in let goal = List.hd goals in let proof, metas, term = goal in (* debug_print *) (* (Printf.sprintf "apply_to_goal with goal: %s" (CicPp.ppterm term)); *) let newmeta = CicMkImplicit.new_meta metasenv [] in let metasenv = (newmeta, context, term)::metasenv @ metas in let irl = CicMkImplicit.identity_relocation_list_for_metavariable context in let status = ((None, metasenv, Cic.Meta (newmeta, irl), term), newmeta) in let rec aux = function | [] -> false, [] (* goals *) (* None *) | (theorem, thmty, _)::tl -> try let subst_in, (newproof, newgoals) = PrimitiveTactics.apply_tac_verbose ~term:theorem status in if newgoals = [] then let _, _, p, _ = newproof in let newp = let rec repl = function | Inference.ProofGoalBlock (_, gp) -> Inference.ProofGoalBlock (Inference.BasicProof p, gp) | Inference.NoProof -> Inference.BasicProof p | Inference.BasicProof _ -> Inference.BasicProof p | Inference.SubProof (t, i, p2) -> Inference.SubProof (t, i, repl p2) | _ -> assert false in repl proof in true, [[newp, metas, term]] (* Some newp *) else if List.length newgoals = 1 then let _, menv, p, _ = newproof in let irl = CicMkImplicit.identity_relocation_list_for_metavariable context in let goals = List.map (fun i -> let _, _, ty = CicUtil.lookup_meta i menv in let proof = Inference.SubProof (p, i, Inference.BasicProof (Cic.Meta (i, irl))) in (proof, menv, ty)) newgoals in let res, others = aux tl in if res then (true, others) else (false, goals::others) else aux tl with ProofEngineTypes.Fail msg -> (* debug_print ("FAIL!!:" ^ msg); *) aux tl in let r, l = if Inference.term_is_equality term then let rec appleq = function | [] -> false, [] | (Positive, equality)::tl -> let ok, _, newproof = apply_equality_to_goal env equality goal in if ok then true, [(depth, [newproof, metas, term])] else appleq tl | _::tl -> appleq tl in let al, _ = active in appleq al else false, [] in if r = true then r, l else let r, l = aux theorems in if r = true then r, List.map (fun l -> (depth+1, l)) l else r, (depth, goals)::(List.map (fun l -> (depth+1, l)) l) ;; *) let new_meta () = incr maxmeta; !maxmeta ;; let apply_to_goal env theorems active goal = let metasenv, context, ugraph = env in let proof, metas, term = goal in debug_print (lazy (Printf.sprintf "apply_to_goal with goal: %s, %s" (string_of_proof proof) (CicPp.ppterm term))); let status = let irl = CicMkImplicit.identity_relocation_list_for_metavariable context in let proof', newmeta = let rec get_meta = function | SubProof (t, i, _) -> t, i | ProofGoalBlock (_, p) -> get_meta p | _ -> let n = new_meta () in (* CicMkImplicit.new_meta metasenv [] in *) Cic.Meta (n, irl), n in get_meta proof in (* let newmeta = CicMkImplicit.new_meta metasenv [] in *) let metasenv = (newmeta, context, term)::metasenv @ metas in ((None, metasenv, Cic.Meta (newmeta, irl), term), newmeta) (* ((None, metasenv, proof', term), newmeta) *) in let rec aux = function | [] -> `No (* , [], [] *) | (theorem, thmty, _)::tl -> try let subst, (newproof, newgoals) = PrimitiveTactics.apply_tac_verbose_with_subst ~term:theorem status in if newgoals = [] then let _, _, p, _ = newproof in let newp = let rec repl = function | Inference.ProofGoalBlock (_, gp) -> Inference.ProofGoalBlock (Inference.BasicProof p, gp) | Inference.NoProof -> Inference.BasicProof p | Inference.BasicProof _ -> Inference.BasicProof p | Inference.SubProof (t, i, p2) -> Inference.SubProof (t, i, repl p2) | _ -> assert false in repl proof in let _, m = status in let subst = List.filter (fun (i, _) -> i = m) subst in (* debug_print *) (* (lazy *) (* (Printf.sprintf "m = %d\nsubst = %s\n" *) (* m (print_subst subst))); *) `Ok (subst, [newp, metas, term]) else let _, menv, p, _ = newproof in let irl = CicMkImplicit.identity_relocation_list_for_metavariable context in let goals = List.map (fun i -> let _, _, ty = CicUtil.lookup_meta i menv in let p' = let rec gp = function | SubProof (t, i, p) -> SubProof (t, i, gp p) | ProofGoalBlock (sp1, sp2) -> (* SubProof (p, i, sp) *) ProofGoalBlock (sp1, gp sp2) (* gp sp *) | BasicProof _ | NoProof -> SubProof (p, i, BasicProof (Cic.Meta (i, irl))) | ProofSymBlock (s, sp) -> ProofSymBlock (s, gp sp) | ProofBlock (s, u, nt, t, pe, sp) -> ProofBlock (s, u, nt, t, pe, gp sp) (* | _ -> assert false *) in gp proof in debug_print (lazy (Printf.sprintf "new sub goal: %s, %s" (string_of_proof p') (CicPp.ppterm ty))); (p', menv, ty)) newgoals in (* debug_print *) (* (lazy *) (* (Printf.sprintf "\nGoOn with subst: %s" (print_subst subst))); *) let best = aux tl in match best with | `Ok (_, _) -> best | `No -> `GoOn ([subst, goals]) | `GoOn sl(* , subst', goals' *) -> (* if (List.length goals') < (List.length goals) then best *) (* else `GoOn, subst, goals *) `GoOn ((subst, goals)::sl) with ProofEngineTypes.Fail msg -> aux tl in let r, s, l = if Inference.term_is_equality term then let rec appleq = function | [] -> false, [], [] | (Positive, equality)::tl -> let ok, s, newproof = apply_equality_to_goal env equality goal in if ok then true, s, [newproof, metas, term] else appleq tl | _::tl -> appleq tl in let al, _ = active in appleq al else false, [], [] in if r = true then `Ok (s, l) else aux theorems ;; let apply_to_goal_conj env theorems active (depth, goals) = let rec aux = function | goal::tl -> let propagate_subst subst (proof, metas, term) = debug_print (lazy (Printf.sprintf "\npropagate_subst:\n%s\n%s, %s\n" (print_subst subst) (string_of_proof proof) (CicPp.ppterm term))); let rec repl = function | NoProof -> NoProof | BasicProof t -> BasicProof (CicMetaSubst.apply_subst subst t) | ProofGoalBlock (p, pb) -> debug_print (lazy "HERE"); let pb' = repl pb in ProofGoalBlock (p, pb') | SubProof (t, i, p) -> let t' = CicMetaSubst.apply_subst subst t in debug_print (lazy (Printf.sprintf "SubProof %d\nt = %s\nsubst = %s\nt' = %s\n" i (CicPp.ppterm t) (print_subst subst) (CicPp.ppterm t'))); let p = repl p in SubProof (t', i, p) | ProofSymBlock (ens, p) -> ProofSymBlock (ens, repl p) | ProofBlock (s, u, nty, t, pe, p) -> ProofBlock (subst @ s, u, nty, t, pe, p) in (repl proof, metas, term) in let r = apply_to_goal env theorems active goal in ( match r with | `No -> `No (depth, goals) | `GoOn sl (* (subst, gl) *) -> (* let tl = List.map (propagate_subst subst) tl in *) debug_print (lazy "GO ON!!!"); let l = List.map (fun (s, gl) -> (depth+1, gl @ (List.map (propagate_subst s) tl))) sl in debug_print (lazy (Printf.sprintf "%s\n" (String.concat "; " (List.map (fun (s, gl) -> (Printf.sprintf "[%s]" (String.concat "; " (List.map (fun (p, _, g) -> (Printf.sprintf "<%s, %s>" (string_of_proof p) (CicPp.ppterm g))) gl)))) l)))); `GoOn l (* (depth+1, gl @ tl) *) | `Ok (subst, gl) -> if tl = [] then (* let _ = *) (* let p, _, t = List.hd gl in *) (* debug_print *) (* (lazy *) (* (Printf.sprintf "OK: %s, %s\n" *) (* (string_of_proof p) (CicPp.ppterm t))) *) (* in *) `Ok (depth, gl) else let p, _, _ = List.hd gl in let subproof = let rec repl = function | SubProof (_, _, p) -> repl p | ProofGoalBlock (p1, p2) -> ProofGoalBlock (repl p1, repl p2) | p -> p in build_proof_term (repl p) in let i = let rec get_meta = function | SubProof (_, i, p) -> max i (get_meta p) | ProofGoalBlock (_, p) -> get_meta p | _ -> -1 (* assert false *) in get_meta p in let subst = let _, (context, _, _) = List.hd subst in [i, (context, subproof, Cic.Implicit None)] in let tl = List.map (propagate_subst subst) tl in `GoOn ([depth+1, tl]) ) | _ -> assert false in debug_print (lazy (Printf.sprintf "apply_to_goal_conj (%d, [%s])" depth (String.concat "; " (List.map (fun (_, _, t) -> CicPp.ppterm t) goals)))); if depth > !maxdepth || (List.length goals) > !maxwidth then ( debug_print (lazy (Printf.sprintf "Pruning because depth = %d, width = %d" depth (List.length goals))); `No (depth, goals) ) else aux goals ;; module OrderedGoals = struct type t = int * (Inference.proof * Cic.metasenv * Cic.term) list let compare g1 g2 = let d1, l1 = g1 and d2, l2 = g2 in let r = d2 - d1 in if r <> 0 then r else let r = (List.length l1) - (List.length l2) in if r <> 0 then r else let res = ref 0 in let _ = List.exists2 (fun (_, _, t1) (_, _, t2) -> let r = Pervasives.compare t1 t2 in if r <> 0 then ( res := r; true ) else false) l1 l2 in !res (* let res = Pervasives.compare g1 g2 in *) (* let _ = *) (* let print_goals (d, gl) = *) (* let gl' = List.map (fun (_, _, t) -> CicPp.ppterm t) gl in *) (* Printf.sprintf "%d, [%s]" d (String.concat "; " gl') *) (* in *) (* debug_print *) (* (lazy *) (* (Printf.sprintf "comparing g1:%s and g2:%s, res: %d\n" *) (* (print_goals g1) (print_goals g2) res)) *) (* in *) (* res *) end module GoalsSet = Set.Make(OrderedGoals);; exception SearchSpaceOver;; let apply_to_goals env is_passive_empty theorems active goals = debug_print (lazy "\n\n\tapply_to_goals\n\n"); let add_to set goals = List.fold_left (fun s g -> GoalsSet.add g s) set goals in let rec aux set = function | [] -> debug_print (lazy "HERE!!!"); if is_passive_empty then raise SearchSpaceOver else false, set | goals::tl -> let res = apply_to_goal_conj env theorems active goals in match res with | `Ok newgoals -> let _ = let d, p, t = match newgoals with | (d, (p, _, t)::_) -> d, p, t | _ -> assert false in debug_print (lazy (Printf.sprintf "\nOK!!!!\ndepth: %d\nProof: %s\ngoal: %s\n" d (string_of_proof p) (CicPp.ppterm t))) in true, GoalsSet.singleton newgoals | `GoOn newgoals -> let print_set set msg = debug_print (lazy (Printf.sprintf "%s:\n%s" msg (String.concat "\n" (GoalsSet.fold (fun (d, gl) l -> let gl' = List.map (fun (_, _, t) -> CicPp.ppterm t) gl in let s = Printf.sprintf "%d, [%s]" d (String.concat "; " gl') in s::l) set [])))) in let set = add_to set (goals::tl) in (* print_set set "SET BEFORE"; *) let n = GoalsSet.cardinal set in let set = add_to set newgoals in (* print_set set "SET AFTER"; *) let m = GoalsSet.cardinal set in (* if n < m then *) false, set (* else *) (* let _ = print_set set "SET didn't change" in *) (* aux set tl *) | `No newgoals -> aux set tl (* let set = add_to set (newgoals::goals::tl) in *) (* let res, set = aux set tl in *) (* res, set *) in let n = List.length goals in let res, goals = aux (add_to GoalsSet.empty goals) goals in let goals = GoalsSet.elements goals in debug_print (lazy "\n\tapply_to_goals end\n"); let m = List.length goals in if m = n && is_passive_empty then raise SearchSpaceOver else res, goals ;; let rec given_clause env goals theorems passive active = let time1 = Unix.gettimeofday () in let selection_estimate = get_selection_estimate () in let kept = size_of_passive passive in let passive = if !time_limit = 0. || !processed_clauses = 0 then passive else if !elapsed_time > !time_limit then ( debug_print (lazy (Printf.sprintf "Time limit (%.2f) reached: %.2f\n" !time_limit !elapsed_time)); make_passive [] [] ) else if kept > selection_estimate then ( debug_print (lazy (Printf.sprintf ("Too many passive equalities: pruning..." ^^ "(kept: %d, selection_estimate: %d)\n") kept selection_estimate)); prune_passive selection_estimate active passive ) else passive in let time2 = Unix.gettimeofday () in passive_maintainance_time := !passive_maintainance_time +. (time2 -. time1); kept_clauses := (size_of_passive passive) + (size_of_active active); (* let refl_equal = *) (* CicUtil.term_of_uri *) (* (UriManager.uri_of_string "cic:/Coq/Init/Logic/eq.ind#xpointer(1/1/1)") *) (* in *) let goals = simplify_goals env goals active in let theorems = simplify_theorems env theorems active in let is_passive_empty = passive_is_empty passive in try let ok, goals = apply_to_goals env is_passive_empty theorems active goals in if ok then let proof = match goals with | (_, [proof, _, _])::_ -> Some proof | _ -> assert false in ParamodulationSuccess (proof, env) else match is_passive_empty (* passive_is_empty passive *) with | true -> (* ParamodulationFailure *) given_clause env goals theorems passive active | false -> let (sign, current), passive = select env goals passive active in let time1 = Unix.gettimeofday () in let res = forward_simplify env (sign, current) ~passive active in let time2 = Unix.gettimeofday () in forward_simpl_time := !forward_simpl_time +. (time2 -. time1); match res with | None -> given_clause env goals theorems passive active | Some (sign, current) -> if (sign = Negative) && (is_identity env current) then ( debug_print (lazy (Printf.sprintf "OK!!! %s %s" (string_of_sign sign) (string_of_equality ~env current))); let _, proof, _, _, _ = current in ParamodulationSuccess (Some proof (* current *), env) ) else ( debug_print (lazy "\n================================================"); debug_print (lazy (Printf.sprintf "selected: %s %s" (string_of_sign sign) (string_of_equality ~env current))); let t1 = Unix.gettimeofday () in let new' = infer env sign current active in let t2 = Unix.gettimeofday () in infer_time := !infer_time +. (t2 -. t1); let res, goal' = contains_empty env new' in if res then let proof = match goal' with | Some goal -> let _, proof, _, _, _ = goal in Some proof | None -> None in ParamodulationSuccess (proof (* goal *), env) else let t1 = Unix.gettimeofday () in let new' = forward_simplify_new env new' active in let t2 = Unix.gettimeofday () in let _ = forward_simpl_new_time := !forward_simpl_new_time +. (t2 -. t1) in let active = match sign with | Negative -> active | Positive -> let t1 = Unix.gettimeofday () in let active, _, newa, _ = backward_simplify env ([], [current]) active in let t2 = Unix.gettimeofday () in backward_simpl_time := !backward_simpl_time +. (t2 -. t1); match newa with | None -> active | Some (n, p) -> let al, tbl = active in let nn = List.map (fun e -> Negative, e) n in let pp, tbl = List.fold_right (fun e (l, t) -> (Positive, e)::l, Indexing.index tbl e) p ([], tbl) in nn @ al @ pp, tbl in (* let _ = *) (* Printf.printf "active:\n%s\n" *) (* (String.concat "\n" *) (* ((List.map *) (* (fun (s, e) -> (string_of_sign s) ^ " " ^ *) (* (string_of_equality ~env e)) (fst active)))); *) (* print_newline (); *) (* in *) (* let _ = *) (* match new' with *) (* | neg, pos -> *) (* Printf.printf "new':\n%s\n" *) (* (String.concat "\n" *) (* ((List.map *) (* (fun e -> "Negative " ^ *) (* (string_of_equality ~env e)) neg) @ *) (* (List.map *) (* (fun e -> "Positive " ^ *) (* (string_of_equality ~env e)) pos))); *) (* print_newline (); *) (* in *) match contains_empty env new' with | false, _ -> let active = let al, tbl = active in match sign with | Negative -> (sign, current)::al, tbl | Positive -> al @ [(sign, current)], Indexing.index tbl current in let passive = add_to_passive passive new' in let (_, ns), (_, ps), _ = passive in (* Printf.printf "passive:\n%s\n" *) (* (String.concat "\n" *) (* ((List.map (fun e -> "Negative " ^ *) (* (string_of_equality ~env e)) *) (* (EqualitySet.elements ns)) @ *) (* (List.map (fun e -> "Positive " ^ *) (* (string_of_equality ~env e)) *) (* (EqualitySet.elements ps)))); *) (* print_newline (); *) given_clause env goals theorems passive active | true, goal -> let proof = match goal with | Some goal -> let _, proof, _, _, _ = goal in Some proof | None -> None in ParamodulationSuccess (proof (* goal *), env) ) with SearchSpaceOver -> ParamodulationFailure ;; let rec given_clause_fullred env goals theorems passive active = let time1 = Unix.gettimeofday () in let selection_estimate = get_selection_estimate () in let kept = size_of_passive passive in let passive = if !time_limit = 0. || !processed_clauses = 0 then passive else if !elapsed_time > !time_limit then ( debug_print (lazy (Printf.sprintf "Time limit (%.2f) reached: %.2f\n" !time_limit !elapsed_time)); make_passive [] [] ) else if kept > selection_estimate then ( debug_print (lazy (Printf.sprintf ("Too many passive equalities: pruning..." ^^ "(kept: %d, selection_estimate: %d)\n") kept selection_estimate)); prune_passive selection_estimate active passive ) else passive in let time2 = Unix.gettimeofday () in passive_maintainance_time := !passive_maintainance_time +. (time2 -. time1); kept_clauses := (size_of_passive passive) + (size_of_active active); (* let refl_equal = *) (* CicUtil.term_of_uri *) (* (UriManager.uri_of_string "cic:/Coq/Init/Logic/eq.ind#xpointer(1/1/1)") *) (* in *) let goals = simplify_goals env goals ~passive active in let theorems = simplify_theorems env theorems ~passive active in let is_passive_empty = passive_is_empty passive in try let ok, goals = apply_to_goals env is_passive_empty theorems active goals in if ok then let proof = match goals with | (_, [proof, _, _])::_ -> Some proof | _ -> assert false in ParamodulationSuccess (proof, env) else let _ = debug_print (lazy ("new_goals: " ^ (string_of_int (List.length goals)))); debug_print (lazy (String.concat "\n" (List.map (fun (d, gl) -> let gl' = List.map (fun (p, _, t) -> (string_of_proof p) ^ ", " ^ (CicPp.ppterm t)) gl in Printf.sprintf "%d: %s" d (String.concat "; " gl')) goals))); in match is_passive_empty (* passive_is_empty passive *) with | true -> (* ParamodulationFailure *) given_clause_fullred env goals theorems passive active | false -> let (sign, current), passive = select env goals passive active in let time1 = Unix.gettimeofday () in let res = forward_simplify env (sign, current) ~passive active in let time2 = Unix.gettimeofday () in forward_simpl_time := !forward_simpl_time +. (time2 -. time1); match res with | None -> given_clause_fullred env goals theorems passive active | Some (sign, current) -> if (sign = Negative) && (is_identity env current) then ( debug_print (lazy (Printf.sprintf "OK!!! %s %s" (string_of_sign sign) (string_of_equality ~env current))); let _, proof, _, _, _ = current in ParamodulationSuccess (Some proof (* current *), env) ) else ( debug_print (lazy "\n================================================"); debug_print (lazy (Printf.sprintf "selected: %s %s" (string_of_sign sign) (string_of_equality ~env current))); let t1 = Unix.gettimeofday () in let new' = infer env sign current active in let t2 = Unix.gettimeofday () in infer_time := !infer_time +. (t2 -. t1); let active = if is_identity env current then active else let al, tbl = active in match sign with | Negative -> (sign, current)::al, tbl | Positive -> al @ [(sign, current)], Indexing.index tbl current in let rec simplify new' active passive = let t1 = Unix.gettimeofday () in let new' = forward_simplify_new env new' ~passive active in let t2 = Unix.gettimeofday () in forward_simpl_new_time := !forward_simpl_new_time +. (t2 -. t1); let t1 = Unix.gettimeofday () in let active, passive, newa, retained = backward_simplify env new' ~passive active in let t2 = Unix.gettimeofday () in backward_simpl_time := !backward_simpl_time +. (t2 -. t1); match newa, retained with | None, None -> active, passive, new' | Some (n, p), None | None, Some (n, p) -> let nn, np = new' in simplify (nn @ n, np @ p) active passive | Some (n, p), Some (rn, rp) -> let nn, np = new' in simplify (nn @ n @ rn, np @ p @ rp) active passive in let active, passive, new' = simplify new' active passive in let k = size_of_passive passive in if k < (kept - 1) then processed_clauses := !processed_clauses + (kept - 1 - k); let _ = debug_print (lazy (Printf.sprintf "active:\n%s\n" (String.concat "\n" ((List.map (fun (s, e) -> (string_of_sign s) ^ " " ^ (string_of_equality ~env e)) (fst active)))))) in let _ = match new' with | neg, pos -> debug_print (lazy (Printf.sprintf "new':\n%s\n" (String.concat "\n" ((List.map (fun e -> "Negative " ^ (string_of_equality ~env e)) neg) @ (List.map (fun e -> "Positive " ^ (string_of_equality ~env e)) pos))))) in match contains_empty env new' with | false, _ -> let passive = add_to_passive passive new' in (* let (_, ns), (_, ps), _ = passive in *) (* Printf.printf "passive:\n%s\n" *) (* (String.concat "\n" *) (* ((List.map (fun e -> "Negative " ^ *) (* (string_of_equality ~env e)) *) (* (EqualitySet.elements ns)) @ *) (* (List.map (fun e -> "Positive " ^ *) (* (string_of_equality ~env e)) *) (* (EqualitySet.elements ps)))); *) (* print_newline (); *) given_clause_fullred env goals theorems passive active | true, goal -> let proof = match goal with | Some goal -> let _, proof, _, _, _ = goal in Some proof | None -> None in ParamodulationSuccess (proof (* goal *), env) ) with SearchSpaceOver -> ParamodulationFailure ;; (* let given_clause_ref = ref given_clause;; *) let main dbd term metasenv ugraph = let module C = Cic in let module T = CicTypeChecker in let module PET = ProofEngineTypes in let module PP = CicPp in let proof = None, (1, [], term)::metasenv, C.Meta (1, []), term in let status = PET.apply_tactic (PrimitiveTactics.intros_tac ()) (proof, 1) in let proof, goals = status in let goal' = List.nth goals 0 in let _, metasenv, meta_proof, _ = proof in let _, context, goal = CicUtil.lookup_meta goal' metasenv in let eq_indexes, equalities, maxm = find_equalities context proof in let lib_eq_uris, library_equalities, maxm = find_library_equalities dbd context (proof, goal') (maxm+2) in maxmeta := maxm+2; (* TODO ugly!! *) let irl = CicMkImplicit.identity_relocation_list_for_metavariable context in let new_meta_goal, metasenv, type_of_goal = let _, context, ty = CicUtil.lookup_meta goal' metasenv in Printf.printf "\n\nTIPO DEL GOAL: %s\n" (CicPp.ppterm ty); print_newline (); Cic.Meta (maxm+1, irl), (maxm+1, context, ty)::metasenv, ty in (* let new_meta_goal = Cic.Meta (goal', irl) in *) let env = (metasenv, context, ugraph) in let theorems = find_library_theorems dbd env (proof, goal') lib_eq_uris in let context_hyp = find_context_hypotheses env eq_indexes in let theorems = context_hyp @ theorems in let _ = debug_print (lazy (Printf.sprintf "Theorems:\n-------------------------------------\n%s\n" (String.concat "\n" (List.map (fun (t, ty, _) -> Printf.sprintf "Term: %s, type: %s" (CicPp.ppterm t) (CicPp.ppterm ty)) theorems)))) in try let goal = Inference.BasicProof new_meta_goal, [], goal in (* let term_equality = equality_of_term new_meta_goal goal in *) (* let _, meta_proof, (eq_ty, left, right, ordering), _, _ = term_equality in *) (* if is_identity env term_equality then *) (* let proof = *) (* Cic.Appl [Cic.MutConstruct (\* reflexivity *\) *) (* (HelmLibraryObjects.Logic.eq_URI, 0, 1, []); *) (* eq_ty; left] *) (* in *) (* let _ = *) (* Printf.printf "OK, found a proof!\n"; *) (* let names = names_of_context context in *) (* print_endline (PP.pp proof names) *) (* in *) (* () *) (* else *) let equalities = let equalities = equalities @ library_equalities in debug_print (lazy (Printf.sprintf "equalities:\n%s\n" (String.concat "\n" (List.map string_of_equality equalities)))); debug_print (lazy "SIMPLYFYING EQUALITIES..."); let rec simpl e others others_simpl = let active = others @ others_simpl in let tbl = List.fold_left (fun t (_, e) -> Indexing.index t e) (Indexing.empty_table ()) active in let res = forward_simplify env e (active, tbl) in match others with | hd::tl -> ( match res with | None -> simpl hd tl others_simpl | Some e -> simpl hd tl (e::others_simpl) ) | [] -> ( match res with | None -> others_simpl | Some e -> e::others_simpl ) in match equalities with | [] -> [] | hd::tl -> let others = List.map (fun e -> (Positive, e)) tl in let res = List.rev (List.map snd (simpl (Positive, hd) others [])) in debug_print (lazy (Printf.sprintf "equalities AFTER:\n%s\n" (String.concat "\n" (List.map string_of_equality res)))); res in let active = make_active () in let passive = make_passive [] (* [term_equality] *) equalities in Printf.printf "\ncurrent goal: %s\n" (let _, _, g = goal in CicPp.ppterm g); (* (string_of_equality ~env term_equality); *) Printf.printf "\ncontext:\n%s\n" (PP.ppcontext context); Printf.printf "\nmetasenv:\n%s\n" (print_metasenv metasenv); Printf.printf "\nequalities:\n%s\n" (String.concat "\n" (List.map (string_of_equality ~env) (equalities @ library_equalities))); print_endline "--------------------------------------------------"; let start = Unix.gettimeofday () in print_endline "GO!"; start_time := Unix.gettimeofday (); let res = (if !use_fullred then given_clause_fullred else given_clause) env [0, [goal]] theorems passive active in let finish = Unix.gettimeofday () in let _ = match res with | ParamodulationFailure -> Printf.printf "NO proof found! :-(\n\n" | ParamodulationSuccess (Some proof (* goal *), env) -> (* let proof = Inference.build_proof_term goal in *) let proof = Inference.build_proof_term proof in Printf.printf "OK, found a proof!\n"; (* REMEMBER: we have to instantiate meta_proof, we should use apply the "apply" tactic to proof and status *) let names = names_of_context context in print_endline (PP.pp proof names); let newmetasenv = List.fold_left (fun m (_, _, _, menv, _) -> m @ menv) metasenv equalities in let _ = Printf.printf "OK, found a proof!\n"; (* REMEMBER: we have to instantiate meta_proof, we should use apply the "apply" tactic to proof and status *) let names = names_of_context context in print_endline (PP.pp proof names); try let ty, ug = CicTypeChecker.type_of_aux' newmetasenv context proof ugraph in (* Printf.printf "OK, found a proof!\n"; *) (* (\* REMEMBER: we have to instantiate meta_proof, we should use *) (* apply the "apply" tactic to proof and status *) (* *\) *) (* let names = names_of_context context in *) (* print_endline (PP.pp proof names); *) (* print_endline (PP.ppterm proof); *) print_endline (string_of_float (finish -. start)); Printf.printf "\nGOAL was: %s\nPROOF has type: %s\nconvertible?: %s\n\n" (CicPp.pp type_of_goal names) (CicPp.pp ty names) (string_of_bool (fst (CicReduction.are_convertible context type_of_goal ty ug))); with e -> Printf.printf "\nEXCEPTION!!! %s\n" (Printexc.to_string e); Printf.printf "MAXMETA USED: %d\n" !maxmeta; print_endline (string_of_float (finish -. start)); in () | ParamodulationSuccess (None, env) -> Printf.printf "Success, but no proof?!?\n\n" in Printf.printf ("infer_time: %.9f\nforward_simpl_time: %.9f\n" ^^ "forward_simpl_new_time: %.9f\n" ^^ "backward_simpl_time: %.9f\n") !infer_time !forward_simpl_time !forward_simpl_new_time !backward_simpl_time; Printf.printf "passive_maintainance_time: %.9f\n" !passive_maintainance_time; Printf.printf " successful unification/matching time: %.9f\n" !Indexing.match_unif_time_ok; Printf.printf " failed unification/matching time: %.9f\n" !Indexing.match_unif_time_no; Printf.printf " indexing retrieval time: %.9f\n" !Indexing.indexing_retrieval_time; Printf.printf " demodulate_term.build_newtarget_time: %.9f\n" !Indexing.build_newtarget_time; Printf.printf "derived %d clauses, kept %d clauses.\n" !derived_clauses !kept_clauses; with exc -> print_endline ("EXCEPTION: " ^ (Printexc.to_string exc)); raise exc ;; let default_depth = !maxdepth and default_width = !maxwidth;; let saturate dbd ?(full=false) ?(depth=default_depth) ?(width=default_width) status = let module C = Cic in maxmeta := 0; maxdepth := depth; maxwidth := width; let proof, goal = status in let goal' = goal in let uri, metasenv, meta_proof, term_to_prove = proof in let _, context, goal = CicUtil.lookup_meta goal' metasenv in let eq_indexes, equalities, maxm = find_equalities context proof in let new_meta_goal, metasenv, type_of_goal = let irl = CicMkImplicit.identity_relocation_list_for_metavariable context in let _, context, ty = CicUtil.lookup_meta goal' metasenv in debug_print (lazy (Printf.sprintf "\n\nTIPO DEL GOAL: %s\n" (CicPp.ppterm ty))); Cic.Meta (maxm+1, irl), (maxm+1, context, ty)::metasenv, ty in let ugraph = CicUniv.empty_ugraph in let env = (metasenv, context, ugraph) in let goal = Inference.BasicProof new_meta_goal, [], goal in let res, time = let lib_eq_uris, library_equalities, maxm = find_library_equalities dbd context (proof, goal') (maxm+2) in maxmeta := maxm+2; let equalities = let equalities = equalities @ library_equalities in debug_print (lazy (Printf.sprintf "equalities:\n%s\n" (String.concat "\n" (List.map string_of_equality equalities)))); debug_print (lazy "SIMPLYFYING EQUALITIES..."); let rec simpl e others others_simpl = let active = others @ others_simpl in let tbl = List.fold_left (fun t (_, e) -> Indexing.index t e) (Indexing.empty_table ()) active in let res = forward_simplify env e (active, tbl) in match others with | hd::tl -> ( match res with | None -> simpl hd tl others_simpl | Some e -> simpl hd tl (e::others_simpl) ) | [] -> ( match res with | None -> others_simpl | Some e -> e::others_simpl ) in match equalities with | [] -> [] | hd::tl -> let others = List.map (fun e -> (Positive, e)) tl in let res = List.rev (List.map snd (simpl (Positive, hd) others [])) in debug_print (lazy (Printf.sprintf "equalities AFTER:\n%s\n" (String.concat "\n" (List.map string_of_equality res)))); res in let theorems = if full then let thms = find_library_theorems dbd env (proof, goal') lib_eq_uris in let context_hyp = find_context_hypotheses env eq_indexes in context_hyp @ thms else let refl_equal = let us = UriManager.string_of_uri (LibraryObjects.eq_URI ()) in UriManager.uri_of_string (us ^ "#xpointer(1/1/1)") in let t = CicUtil.term_of_uri refl_equal in let ty, _ = CicTypeChecker.type_of_aux' [] [] t CicUniv.empty_ugraph in [(t, ty, [])] in let _ = debug_print (lazy (Printf.sprintf "Theorems:\n-------------------------------------\n%s\n" (String.concat "\n" (List.map (fun (t, ty, _) -> Printf.sprintf "Term: %s, type: %s" (CicPp.ppterm t) (CicPp.ppterm ty)) theorems)))) in let active = make_active () in let passive = make_passive [(* term_equality *)] equalities in let start = Unix.gettimeofday () in let res = given_clause_fullred env [0, [goal]] theorems passive active in let finish = Unix.gettimeofday () in (res, finish -. start) in match res with | ParamodulationSuccess (Some proof (* goal *), env) -> debug_print (lazy "OK, found a proof!"); (* let proof = Inference.build_proof_term goal in *) let proof = Inference.build_proof_term proof in let names = names_of_context context in let newmetasenv = let i1 = match new_meta_goal with | C.Meta (i, _) -> i | _ -> assert false in List.filter (fun (i, _, _) -> i <> i1 && i <> goal') metasenv in let newstatus = try let ty, ug = CicTypeChecker.type_of_aux' newmetasenv context proof ugraph in debug_print (lazy (CicPp.pp proof [](* names *))); debug_print (lazy (Printf.sprintf "\nGOAL was: %s\nPROOF has type: %s\nconvertible?: %s\n" (CicPp.pp type_of_goal names) (CicPp.pp ty names) (string_of_bool (fst (CicReduction.are_convertible context type_of_goal ty ug))))); let equality_for_replace i t1 = match t1 with | C.Meta (n, _) -> n = i | _ -> false in let real_proof = ProofEngineReduction.replace ~equality:equality_for_replace ~what:[goal'] ~with_what:[proof] ~where:meta_proof in debug_print (lazy (Printf.sprintf "status:\n%s\n%s\n%s\n%s\n" (match uri with Some uri -> UriManager.string_of_uri uri | None -> "") (print_metasenv newmetasenv) (CicPp.pp real_proof [](* names *)) (CicPp.pp term_to_prove names))); ((uri, newmetasenv, real_proof, term_to_prove), []) with CicTypeChecker.TypeCheckerFailure _ -> debug_print (lazy "THE PROOF DOESN'T TYPECHECK!!!"); debug_print (lazy (CicPp.pp proof names)); raise (ProofEngineTypes.Fail "Found a proof, but it doesn't typecheck") in debug_print (lazy (Printf.sprintf "\nTIME NEEDED: %.9f" time)); newstatus | _ -> raise (ProofEngineTypes.Fail "NO proof found") ;; (* dummy function called within matita to trigger linkage *) let init () = ();; (* UGLY SIDE EFFECT... *) if connect_to_auto then ( AutoTactic.paramodulation_tactic := saturate; AutoTactic.term_is_equality := Inference.term_is_equality; );;