open Inference;; open Utils;; type result = | Failure | Success of Cic.term option * environment ;; type equality_sign = Negative | Positive;; let string_of_sign = function | Negative -> "Negative" | Positive -> "Positive" ;; module OrderedEquality = struct type t = Inference.equality let compare eq1 eq2 = match meta_convertibility_eq eq1 eq2 with | true -> 0 | false -> let _, (ty, left, right), _, _ = eq1 and _, (ty', left', right'), _, _ = eq2 in let weight_of t = fst (weight_of_term ~consider_metas:false t) in let w1 = (weight_of ty) + (weight_of left) + (weight_of right) and w2 = (weight_of ty') + (weight_of left') + (weight_of right') in match Pervasives.compare w1 w2 with | 0 -> Pervasives.compare eq1 eq2 | res -> res end module EqualitySet = Set.Make(OrderedEquality);; let weight_age_ratio = ref 0;; (* settable by the user from the command line *) let weight_age_counter = ref !weight_age_ratio;; let set_selection = ref (fun set -> EqualitySet.min_elt set);; let select env passive = let (neg_list, neg_set), (pos_list, pos_set) = passive in if !weight_age_ratio > 0 then weight_age_counter := !weight_age_counter - 1; match !weight_age_counter with | 0 -> ( weight_age_counter := !weight_age_ratio; match neg_list, pos_list with | hd::tl, pos -> (Negative, hd), ((tl, EqualitySet.remove hd neg_set), (pos, pos_set)) | [], hd::tl -> (Positive, hd), (([], neg_set), (tl, EqualitySet.remove hd pos_set)) | _, _ -> assert false ) | _ -> let remove eq l = List.filter (fun e -> not (e = eq)) l in if EqualitySet.is_empty neg_set then let current = !set_selection pos_set in let passive = (neg_list, neg_set), (remove current pos_list, EqualitySet.remove current pos_set) in (Positive, current), passive else let current = !set_selection neg_set in let passive = (remove current neg_list, EqualitySet.remove current neg_set), (pos_list, pos_set) in (Negative, current), passive ;; let make_passive neg pos = let set_of equalities = List.fold_left (fun s e -> EqualitySet.add e s) EqualitySet.empty equalities in (neg, set_of neg), (pos, set_of pos) ;; let add_to_passive passive (new_neg, new_pos) = let (neg_list, neg_set), (pos_list, pos_set) = passive in let ok set equality = not (EqualitySet.mem equality set) in let neg = List.filter (ok neg_set) new_neg and pos = List.filter (ok pos_set) new_pos in let add set equalities = List.fold_left (fun s e -> EqualitySet.add e s) set equalities in (neg @ neg_list, add neg_set neg), (pos_list @ pos, add pos_set pos) ;; let passive_is_empty = function | ([], _), ([], _) -> true | _ -> false ;; (* TODO: find a better way! *) let maxmeta = ref 0;; let infer env sign current active = let rec infer_negative current = function | [] -> [], [] | (Negative, _)::tl -> infer_negative current tl | (Positive, equality)::tl -> let res = superposition_left env current equality in let neg, pos = infer_negative current tl in res @ neg, pos and infer_positive current = function | [] -> [], [] | (Negative, equality)::tl -> let res = superposition_left env equality current in let neg, pos = infer_positive current tl in res @ neg, pos | (Positive, equality)::tl -> let maxm, res = superposition_right !maxmeta env current equality in let maxm, res' = superposition_right maxm env equality current in maxmeta := maxm; let neg, pos = infer_positive current tl in (* Printf.printf "risultato di superposition_right: %s %s\n%s\n\n" *) (* (string_of_equality ~env current) (string_of_equality ~env equality) *) (* (String.concat "\n" (List.map (string_of_equality ~env) res)); *) (* Printf.printf "risultato di superposition_right: %s %s\n%s\n\n" *) (* (string_of_equality ~env equality) (string_of_equality ~env current) *) (* (String.concat "\n" (List.map (string_of_equality ~env) res')); *) neg, res @ res' @ pos in match sign with | Negative -> infer_negative current active | Positive -> infer_positive current active ;; let contains_empty env (negative, positive) = let metasenv, context, ugraph = env in try let (proof, _, _, _) = List.find (fun (proof, (ty, left, right), m, a) -> fst (CicReduction.are_convertible context left right ugraph)) negative in true, Some proof with Not_found -> false, None ;; let forward_simplify env (sign, current) active = (* first step, remove already present equalities *) let duplicate = let rec aux = function | [] -> false | (s, eq)::tl when s = sign -> if meta_convertibility_eq current eq then true else aux tl | _::tl -> aux tl in aux active in if duplicate then None else let rec aux env (sign, current) = function | [] -> Some (sign, current) | (Negative, _)::tl -> aux env (sign, current) tl | (Positive, equality)::tl -> let newmeta, current = demodulation !maxmeta env current equality in maxmeta := newmeta; if is_identity env current then None else aux env (sign, current) tl in aux env (sign, current) active ;; let forward_simplify_new env (new_neg, new_pos) active = let remove_identities equalities = let ok eq = not (is_identity env eq) in List.filter ok equalities in let rec simpl active target = match active with | [] -> target | (Negative, _)::tl -> simpl tl target | (Positive, source)::tl -> let newmeta, target = demodulation !maxmeta env target source in maxmeta := newmeta; if is_identity env target then target else simpl tl target in let new_neg = List.map (simpl active) new_neg and new_pos = List.map (simpl active) new_pos in new_neg, remove_identities new_pos ;; let backward_simplify env (sign, current) active = match sign with | Negative -> active | Positive -> let active = List.map (fun (s, equality) -> (* match s with *) (* | Negative -> s, equality *) (* | Positive -> *) let newmeta, equality = demodulation !maxmeta env equality current in maxmeta := newmeta; s, equality) active in let active = List.filter (fun (s, eq) -> not (is_identity env eq)) active in let find eq1 where = List.exists (fun (s, e) -> meta_convertibility_eq eq1 e) where in List.fold_right (fun (s, eq) res -> if find eq res then res else (s, eq)::res) active [] ;; let rec given_clause env passive active = match passive_is_empty passive with | true -> Failure | false -> (* Printf.printf "before select\n"; *) let (sign, current), passive = select env passive in (* Printf.printf "before simplification: sign: %s\ncurrent: %s\n\n" *) (* (string_of_sign sign) (string_of_equality ~env current); *) match forward_simplify env (sign, current) active with | None when sign = Negative -> Printf.printf "OK!!! %s %s" (string_of_sign sign) (string_of_equality ~env current); print_newline (); let proof, _, _, _ = current in Success (Some proof, env) | None -> (* Printf.printf "avanti... %s %s" (string_of_sign sign) *) (* (string_of_equality ~env current); *) (* print_newline (); *) given_clause env passive active | Some (sign, current) -> (* Printf.printf "selected: %s %s" *) (* (string_of_sign sign) (string_of_equality ~env current); *) (* print_newline (); *) let new' = infer env sign current active in let new' = forward_simplify_new env new' active in let active = backward_simplify env (sign, current) active (* match new' with *) (* | [], [] -> backward_simplify env (sign, current) active *) (* | _ -> active *) in print_endline "\n================================================"; let _ = Printf.printf "active:\n%s\n" (String.concat "\n" ((List.map (fun (s, e) -> (string_of_sign s) ^ " " ^ (string_of_equality ~env e)) active))); print_newline (); in (* let _ = *) (* match new' with *) (* | neg, pos -> *) (* Printf.printf "new':\n%s\n" *) (* (String.concat "\n" *) (* ((List.map *) (* (fun e -> "Negative " ^ *) (* (string_of_equality ~env e)) neg) @ *) (* (List.map *) (* (fun e -> "Positive " ^ *) (* (string_of_equality ~env e)) pos))); *) (* print_newline (); *) (* in *) match contains_empty env new' with | false, _ -> let active = match sign with | Negative -> (sign, current)::active | Positive -> active @ [(sign, current)] in let passive = add_to_passive passive new' in given_clause env passive active | true, proof -> Success (proof, env) ;; let get_from_user () = let dbd = Mysql.quick_connect ~host:"localhost" ~user:"helm" ~database:"mowgli" () in let rec get () = match read_line () with | "" -> [] | t -> t::(get ()) in let term_string = String.concat "\n" (get ()) in let env, metasenv, term, ugraph = List.nth (Disambiguate.Trivial.disambiguate_string dbd term_string) 0 in term, metasenv, ugraph ;; let main () = let module C = Cic in let module T = CicTypeChecker in let module PET = ProofEngineTypes in let module PP = CicPp in let term, metasenv, ugraph = get_from_user () in let proof = None, (1, [], term)::metasenv, C.Meta (1, []), term in let proof, goals = PET.apply_tactic (PrimitiveTactics.intros_tac ()) (proof, 1) in let goal = List.nth goals 0 in let _, metasenv, meta_proof, _ = proof in let _, context, goal = CicUtil.lookup_meta goal metasenv in let equalities, maxm = find_equalities context proof in maxmeta := maxm; (* TODO ugly!! *) let env = (metasenv, context, ugraph) in try let term_equality = equality_of_term meta_proof goal in let meta_proof, (eq_ty, left, right), _, _ = term_equality in let active = [] in let passive = make_passive [term_equality] equalities in Printf.printf "\ncurrent goal: %s ={%s} %s\n" (PP.ppterm left) (PP.ppterm eq_ty) (PP.ppterm right); Printf.printf "\ncontext:\n%s\n" (PP.ppcontext context); Printf.printf "\nmetasenv:\n%s\n" (print_metasenv metasenv); Printf.printf "\nequalities:\n"; List.iter (function (_, (ty, t1, t2), _, _) -> let w1 = weight_of_term t1 in let w2 = weight_of_term t2 in let res = nonrec_kbo t1 t2 in Printf.printf "{%s}: %s<%s> %s %s<%s>\n" (PP.ppterm ty) (PP.ppterm t1) (string_of_weight w1) (string_of_comparison res) (PP.ppterm t2) (string_of_weight w2)) equalities; print_endline "--------------------------------------------------"; let start = Sys.time () in print_endline "GO!"; let res = given_clause env passive active in let finish = Sys.time () in match res with | Failure -> Printf.printf "NO proof found! :-(\n\n" | Success (Some proof, env) -> Printf.printf "OK, found a proof!:\n%s\n%.9f\n" (PP.ppterm proof) (finish -. start); | Success (None, env) -> Printf.printf "Success, but no proof?!?\n\n" with exc -> print_endline ("EXCEPTION: " ^ (Printexc.to_string exc)); ;; let configuration_file = ref "../../gTopLevel/gTopLevel.conf.xml";; let _ = let set_ratio v = weight_age_ratio := v; weight_age_counter := v and set_sel () = set_selection := (fun s -> EqualitySet.max_elt s) and set_conf f = configuration_file := f in Arg.parse [ "-r", Arg.Int set_ratio, "Weight-Age equality selection ratio"; "-i", Arg.Unit set_sel, "Inverse selection (select heaviest equalities before)"; "-c", Arg.String set_conf, "Configuration file (for the db connection)"; ] (fun a -> ()) "Usage:" in Helm_registry.load_from !configuration_file; main ()