(* Copyright (C) 2005, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://cs.unibo.it/helm/. *) let debug = true;; let debug_print s = if debug then prerr_endline (Lazy.force s);; let print_metasenv metasenv = String.concat "\n--------------------------\n" (List.map (fun (i, context, term) -> (string_of_int i) ^ " [\n" ^ (CicPp.ppcontext context) ^ "\n] " ^ (CicPp.ppterm term)) metasenv) ;; let print_subst ?(prefix="\n") subst = String.concat prefix (List.map (fun (i, (c, t, ty)) -> Printf.sprintf "?%d -> %s : %s" i (CicPp.ppterm t) (CicPp.ppterm ty)) subst) ;; (* (weight of constants, [(meta, weight_of_meta)]) *) type weight = int * (int * int) list;; let string_of_weight (cw, mw) = let s = String.concat ", " (List.map (function (m, w) -> Printf.sprintf "(%d,%d)" m w) mw) in Printf.sprintf "[%d; %s]" cw s let weight_of_term ?(consider_metas=true) term = let module C = Cic in let vars_dict = Hashtbl.create 5 in let rec aux = function | C.Meta (metano, _) when consider_metas -> (try let oldw = Hashtbl.find vars_dict metano in Hashtbl.replace vars_dict metano (oldw+1) with Not_found -> Hashtbl.add vars_dict metano 1); 0 | C.Meta _ -> 0 (* "variables" are lighter than constants and functions...*) | C.Var (_, ens) | C.Const (_, ens) | C.MutInd (_, _, ens) | C.MutConstruct (_, _, _, ens) -> List.fold_left (fun w (u, t) -> (aux t) + w) 1 ens | C.Cast (t1, t2) | C.Lambda (_, t1, t2) | C.Prod (_, t1, t2) | C.LetIn (_, t1, t2) -> let w1 = aux t1 in let w2 = aux t2 in w1 + w2 + 1 | C.Appl l -> List.fold_left (+) 0 (List.map aux l) | C.MutCase (_, _, outt, t, pl) -> let w1 = aux outt in let w2 = aux t in let w3 = List.fold_left (+) 0 (List.map aux pl) in w1 + w2 + w3 + 1 | C.Fix (_, fl) -> List.fold_left (fun w (n, i, t1, t2) -> (aux t1) + (aux t2) + w) 1 fl | C.CoFix (_, fl) -> List.fold_left (fun w (n, t1, t2) -> (aux t1) + (aux t2) + w) 1 fl | _ -> 1 in let w = aux term in let l = Hashtbl.fold (fun meta metaw resw -> (meta, metaw)::resw) vars_dict [] in let compare w1 w2 = match w1, w2 with | (m1, _), (m2, _) -> m2 - m1 in (w, List.sort compare l) (* from the biggest meta to the smallest (0) *) ;; module OrderedInt = struct type t = int let compare = Pervasives.compare end module IntSet = Set.Make(OrderedInt) let compute_equality_weight ty left right = let metasw = ref 0 in let weight_of t = let w, m = (weight_of_term ~consider_metas:true t) in metasw := !metasw + (2 * (List.length m)); w in (* Warning: the following let cannot be expanded since it forces the right evaluation order!!!! *) let w = (weight_of ty) + (weight_of left) + (weight_of right) in w + !metasw ;; (* returns a "normalized" version of the polynomial weight wl (with type * weight list), i.e. a list sorted ascending by meta number, * from 0 to maxmeta. wl must be sorted descending by meta number. Example: * normalize_weight 5 (3, [(3, 2); (1, 1)]) -> * (3, [(1, 1); (2, 0); (3, 2); (4, 0); (5, 0)]) *) let normalize_weight maxmeta (cw, wl) = let rec aux = function | 0 -> [] | m -> (m, 0)::(aux (m-1)) in let tmpl = aux maxmeta in let wl = List.sort (fun (m, _) (n, _) -> Pervasives.compare m n) (List.fold_left (fun res (m, w) -> (m, w)::(List.remove_assoc m res)) tmpl wl) in (cw, wl) ;; let normalize_weights (cw1, wl1) (cw2, wl2) = let rec aux wl1 wl2 = match wl1, wl2 with | [], [] -> [], [] | (m, w)::tl1, (n, w')::tl2 when m = n -> let res1, res2 = aux tl1 tl2 in (m, w)::res1, (n, w')::res2 | (m, w)::tl1, ((n, w')::_ as wl2) when m < n -> let res1, res2 = aux tl1 wl2 in (m, w)::res1, (m, 0)::res2 | ((m, w)::_ as wl1), (n, w')::tl2 when m > n -> let res1, res2 = aux wl1 tl2 in (n, 0)::res1, (n, w')::res2 | [], (n, w)::tl2 -> let res1, res2 = aux [] tl2 in (n, 0)::res1, (n, w)::res2 | (m, w)::tl1, [] -> let res1, res2 = aux tl1 [] in (m, w)::res1, (m, 0)::res2 | _, _ -> assert false in let cmp (m, _) (n, _) = compare m n in let wl1, wl2 = aux (List.sort cmp wl1) (List.sort cmp wl2) in (cw1, wl1), (cw2, wl2) ;; type comparison = Lt | Le | Eq | Ge | Gt | Incomparable;; let string_of_comparison = function | Lt -> "<" | Le -> "<=" | Gt -> ">" | Ge -> ">=" | Eq -> "=" | Incomparable -> "I" let compare_weights ?(normalize=false) ((h1, w1) as weight1) ((h2, w2) as weight2)= let (h1, w1), (h2, w2) = if normalize then normalize_weights weight1 weight2 else (h1, w1), (h2, w2) in let res, diffs = try List.fold_left2 (fun ((lt, eq, gt), diffs) w1 w2 -> match w1, w2 with | (meta1, w1), (meta2, w2) when meta1 = meta2 -> let diffs = (w1 - w2) + diffs in let r = compare w1 w2 in if r < 0 then (lt+1, eq, gt), diffs else if r = 0 then (lt, eq+1, gt), diffs else (lt, eq, gt+1), diffs | (meta1, w1), (meta2, w2) -> debug_print (lazy (Printf.sprintf "HMMM!!!! %s, %s\n" (string_of_weight weight1) (string_of_weight weight2))); assert false) ((0, 0, 0), 0) w1 w2 with Invalid_argument _ -> debug_print (lazy (Printf.sprintf "Invalid_argument: %s{%s}, %s{%s}, normalize = %s\n" (string_of_weight (h1, w1)) (string_of_weight weight1) (string_of_weight (h2, w2)) (string_of_weight weight2) (string_of_bool normalize))); assert false in let hdiff = h1 - h2 in match res with | (0, _, 0) -> if hdiff < 0 then Lt else if hdiff > 0 then Gt else Eq (* Incomparable *) | (m, _, 0) -> if hdiff <= 0 then if m > 0 || hdiff < 0 then Lt else if diffs >= (- hdiff) then Le else Incomparable else if diffs >= (- hdiff) then Le else Incomparable | (0, _, m) -> if hdiff >= 0 then if m > 0 || hdiff > 0 then Gt else if (- diffs) >= hdiff then Ge else Incomparable else if (- diffs) >= hdiff then Ge else Incomparable | (m, _, n) when m > 0 && n > 0 -> Incomparable | _ -> assert false ;; let rec aux_ordering ?(recursion=true) t1 t2 = let module C = Cic in let compare_uris u1 u2 = let res = compare (UriManager.string_of_uri u1) (UriManager.string_of_uri u2) in if res < 0 then Lt else if res = 0 then Eq else Gt in match t1, t2 with | C.Meta _, _ | _, C.Meta _ -> Incomparable | t1, t2 when t1 = t2 -> Eq | C.Rel n, C.Rel m -> if n > m then Lt else Gt | C.Rel _, _ -> Lt | _, C.Rel _ -> Gt | C.Const (u1, _), C.Const (u2, _) -> compare_uris u1 u2 | C.Const _, _ -> Lt | _, C.Const _ -> Gt | C.MutInd (u1, _, _), C.MutInd (u2, _, _) -> compare_uris u1 u2 | C.MutInd _, _ -> Lt | _, C.MutInd _ -> Gt | C.MutConstruct (u1, _, _, _), C.MutConstruct (u2, _, _, _) -> compare_uris u1 u2 | C.MutConstruct _, _ -> Lt | _, C.MutConstruct _ -> Gt | C.Appl l1, C.Appl l2 when recursion -> let rec cmp t1 t2 = match t1, t2 with | [], [] -> Eq | _, [] -> Gt | [], _ -> Lt | hd1::tl1, hd2::tl2 -> let o = aux_ordering hd1 hd2 in if o = Eq then cmp tl1 tl2 else o in cmp l1 l2 | C.Appl (h1::t1), C.Appl (h2::t2) when not recursion -> aux_ordering h1 h2 | t1, t2 -> debug_print (lazy (Printf.sprintf "These two terms are not comparable:\n%s\n%s\n\n" (CicPp.ppterm t1) (CicPp.ppterm t2))); Incomparable ;; (* w1, w2 are the weights, they should already be normalized... *) let nonrec_kbo_w (t1, w1) (t2, w2) = match compare_weights w1 w2 with | Le -> if aux_ordering t1 t2 = Lt then Lt else Incomparable | Ge -> if aux_ordering t1 t2 = Gt then Gt else Incomparable | Eq -> aux_ordering t1 t2 | res -> res ;; let nonrec_kbo t1 t2 = let w1 = weight_of_term t1 in let w2 = weight_of_term t2 in match compare_weights ~normalize:true w1 w2 with | Le -> if aux_ordering t1 t2 = Lt then Lt else Incomparable | Ge -> if aux_ordering t1 t2 = Gt then Gt else Incomparable | Eq -> aux_ordering t1 t2 | res -> res ;; let rec kbo t1 t2 = let aux = aux_ordering ~recursion:false in let w1 = weight_of_term t1 and w2 = weight_of_term t2 in let rec cmp t1 t2 = match t1, t2 with | [], [] -> Eq | _, [] -> Gt | [], _ -> Lt | hd1::tl1, hd2::tl2 -> let o = kbo hd1 hd2 in if o = Eq then cmp tl1 tl2 else o in let comparison = compare_weights ~normalize:true w1 w2 in match comparison with | Le -> let r = aux t1 t2 in if r = Lt then Lt else if r = Eq then ( match t1, t2 with | Cic.Appl (h1::tl1), Cic.Appl (h2::tl2) when h1 = h2 -> if cmp tl1 tl2 = Lt then Lt else Incomparable | _, _ -> Incomparable ) else Incomparable | Ge -> let r = aux t1 t2 in if r = Gt then Gt else if r = Eq then ( match t1, t2 with | Cic.Appl (h1::tl1), Cic.Appl (h2::tl2) when h1 = h2 -> if cmp tl1 tl2 = Gt then Gt else Incomparable | _, _ -> Incomparable ) else Incomparable | Eq -> let r = aux t1 t2 in if r = Eq then ( match t1, t2 with | Cic.Appl (h1::tl1), Cic.Appl (h2::tl2) when h1 = h2 -> cmp tl1 tl2 | _, _ -> Incomparable ) else r | res -> res ;; let names_of_context context = List.map (function | None -> None | Some (n, e) -> Some n) context ;; module OrderedTerm = struct type t = Cic.term let compare = Pervasives.compare end module TermSet = Set.Make(OrderedTerm);; module TermMap = Map.Make(OrderedTerm);; let symbols_of_term term = let module C = Cic in let rec aux map = function | C.Meta _ -> map | C.Appl l -> List.fold_left (fun res t -> (aux res t)) map l | t -> let map = try let c = TermMap.find t map in TermMap.add t (c+1) map with Not_found -> TermMap.add t 1 map in map in aux TermMap.empty term ;; let metas_of_term term = let module C = Cic in let rec aux = function | C.Meta _ as t -> TermSet.singleton t | C.Appl l -> List.fold_left (fun res t -> TermSet.union res (aux t)) TermSet.empty l | t -> TermSet.empty (* TODO: maybe add other cases? *) in aux term ;; let rec lpo t1 t2 = let module C = Cic in match t1, t2 with | t1, t2 when t1 = t2 -> Eq | t1, (C.Meta _ as m) -> if TermSet.mem m (metas_of_term t1) then Gt else Incomparable | (C.Meta _ as m), t2 -> if TermSet.mem m (metas_of_term t2) then Lt else Incomparable | C.Appl (hd1::tl1), C.Appl (hd2::tl2) -> ( let res = let f o r t = if r then true else match lpo t o with | Gt | Eq -> true | _ -> false in let res1 = List.fold_left (f t2) false tl1 in if res1 then Gt else let res2 = List.fold_left (f t1) false tl2 in if res2 then Lt else Incomparable in if res <> Incomparable then res else let f o r t = if not r then false else match lpo o t with | Gt -> true | _ -> false in match aux_ordering hd1 hd2 with | Gt -> let res = List.fold_left (f t1) false tl2 in if res then Gt else Incomparable | Lt -> let res = List.fold_left (f t2) false tl1 in if res then Lt else Incomparable | Eq -> ( let lex_res = try List.fold_left2 (fun r t1 t2 -> if r <> Eq then r else lpo t1 t2) Eq tl1 tl2 with Invalid_argument _ -> Incomparable in match lex_res with | Gt -> if List.fold_left (f t1) false tl2 then Gt else Incomparable | Lt -> if List.fold_left (f t2) false tl1 then Lt else Incomparable | _ -> Incomparable ) | _ -> Incomparable ) | t1, t2 -> aux_ordering t1 t2 ;; (* settable by the user... *) let compare_terms = ref nonrec_kbo;; type equality_sign = Negative | Positive;; let string_of_sign = function | Negative -> "Negative" | Positive -> "Positive" ;; type pos = Left | Right let string_of_pos = function | Left -> "Left" | Right -> "Right" ;; let eq_ind_URI () = LibraryObjects.eq_ind_URI ~eq:(LibraryObjects.eq_URI ()) let eq_ind_r_URI () = LibraryObjects.eq_ind_r_URI ~eq:(LibraryObjects.eq_URI ()) let sym_eq_URI () = LibraryObjects.sym_eq_URI ~eq:(LibraryObjects.eq_URI ()) let eq_XURI () = let s = UriManager.string_of_uri (LibraryObjects.eq_URI ()) in UriManager.uri_of_string (s ^ "#xpointer(1/1/1)") let trans_eq_URI () = LibraryObjects.trans_eq_URI ~eq:(LibraryObjects.eq_URI ())