(* Copyright (C) 2002, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://cs.unibo.it/helm/. *) let rewrite_tac ~term:equality ~status:(proof,goal) = let module C = Cic in let module U = UriManager in let curi,metasenv,pbo,pty = proof in let metano,context,gty = List.find (function (m,_,_) -> m=goal) metasenv in let eq_ind_r,ty,t1,t2 = match CicTypeChecker.type_of_aux' metasenv context equality with C.Appl [C.MutInd (uri,0,[]) ; ty ; t1 ; t2] when U.eq uri (U.uri_of_string "cic:/Coq/Init/Logic/eq.ind") -> let eq_ind_r = C.Const (U.uri_of_string "cic:/Coq/Init/Logic/eq_ind_r.con",[]) in eq_ind_r,ty,t1,t2 | C.Appl [C.MutInd (uri,0,[]) ; ty ; t1 ; t2] when U.eq uri (U.uri_of_string "cic:/Coq/Init/Logic_Type/eqT.ind") -> let eqT_ind_r = C.Const (U.uri_of_string "cic:/Coq/Init/Logic_Type/eqT_ind_r.con",[]) in eqT_ind_r,ty,t1,t2 | _ -> raise (ProofEngineTypes.Fail "Rewrite: the argument is not a proof of an equality") in let pred = let gty' = CicSubstitution.lift 1 gty in let t1' = CicSubstitution.lift 1 t1 in let gty'' = ProofEngineReduction.replace_lifting ~equality:ProofEngineReduction.alpha_equivalence ~what:[t1'] ~with_what:[C.Rel 1] ~where:gty' in C.Lambda (ProofEngineHelpers.mk_fresh_name context C.Anonymous ty, ty, gty'') in let fresh_meta = ProofEngineHelpers.new_meta proof in let irl = ProofEngineHelpers.identity_relocation_list_for_metavariable context in let metasenv' = (fresh_meta,context,C.Appl [pred ; t2])::metasenv in let (proof',goals) = PrimitiveTactics.exact_tac ~term:(C.Appl [eq_ind_r ; ty ; t2 ; pred ; C.Meta (fresh_meta,irl) ; t1 ;equality]) ~status:((curi,metasenv',pbo,pty),goal) in assert (List.length goals = 0) ; (proof',[fresh_meta]) ;; let rewrite_simpl_tac ~term ~status = Tacticals.then_ ~start:(rewrite_tac ~term) ~continuation: (ReductionTactics.simpl_tac ~also_in_hypotheses:false ~terms:None) ~status ;; let rewrite_back_tac ~term:equality ~status:(proof,goal) = let module C = Cic in let module U = UriManager in let curi,metasenv,pbo,pty = proof in let metano,context,gty = List.find (function (m,_,_) -> m=goal) metasenv in let eq_ind_r,ty,t1,t2 = match CicTypeChecker.type_of_aux' metasenv context equality with C.Appl [C.MutInd (uri,0,[]) ; ty ; t1 ; t2] when U.eq uri (U.uri_of_string "cic:/Coq/Init/Logic/eq.ind") -> let eq_ind_r = C.Const (U.uri_of_string "cic:/Coq/Init/Logic/eq_ind.con",[]) in eq_ind_r,ty,t2,t1 | C.Appl [C.MutInd (uri,0,[]) ; ty ; t1 ; t2] when U.eq uri (U.uri_of_string "cic:/Coq/Init/Logic_Type/eqT.ind") -> let eqT_ind_r = C.Const (U.uri_of_string "cic:/Coq/Init/Logic_Type/eqT_ind.con",[]) in eqT_ind_r,ty,t2,t1 | _ -> raise (ProofEngineTypes.Fail "Rewrite: the argument is not a proof of an equality") in let pred = let gty' = CicSubstitution.lift 1 gty in let t1' = CicSubstitution.lift 1 t1 in let gty'' = ProofEngineReduction.replace_lifting ~equality:ProofEngineReduction.alpha_equivalence ~what:[t1'] ~with_what:[C.Rel 1] ~where:gty' in C.Lambda (ProofEngineHelpers.mk_fresh_name context C.Anonymous ty, ty, gty'') in let fresh_meta = ProofEngineHelpers.new_meta proof in let irl = ProofEngineHelpers.identity_relocation_list_for_metavariable context in let metasenv' = (fresh_meta,context,C.Appl [pred ; t2])::metasenv in let (proof',goals) = PrimitiveTactics.exact_tac ~term:(C.Appl [eq_ind_r ; ty ; t2 ; pred ; C.Meta (fresh_meta,irl) ; t1 ;equality]) ~status:((curi,metasenv',pbo,pty),goal) in assert (List.length goals = 0) ; (proof',[fresh_meta]) ;; let rewrite_back_simpl_tac ~term ~status = Tacticals.then_ ~start:(rewrite_back_tac ~term) ~continuation: (ReductionTactics.simpl_tac ~also_in_hypotheses:false ~terms:None) ~status ;; let replace_tac ~what ~with_what ~status:((proof, goal) as status) = let module C = Cic in let module U = UriManager in let module P = PrimitiveTactics in let module T = Tacticals in let _,metasenv,_,_ = proof in let _,context,_ = List.find (function (m,_,_) -> m=goal) metasenv in let wty = CicTypeChecker.type_of_aux' metasenv context what in try if (wty = (CicTypeChecker.type_of_aux' metasenv context with_what)) then T.thens ~start:( P.cut_tac (C.Appl [ (C.MutInd ((U.uri_of_string "cic:/Coq/Init/Logic/eq.ind"), 0, [])) ; (* quale uguaglianza usare, eq o eqT ? *) wty ; what ; with_what])) ~continuations:[ T.then_ ~start:(rewrite_simpl_tac ~term:(C.Rel 1)) ~continuation:( ProofEngineStructuralRules.clear ~hyp:(List.hd context)) ; T.id_tac] ~status else raise (ProofEngineTypes.Fail "Replace: terms not replaceable") with (Failure "hd") -> raise (ProofEngineTypes.Fail "Replace: empty context") ;; (* All these tacs do is applying the right constructor/theorem *) let reflexivity_tac = IntroductionTactics.constructor_tac ~n:1 ;; let symmetry_tac ~status:(proof, goal) = let module C = Cic in let module R = CicReduction in let module U = UriManager in let (_,metasenv,_,_) = proof in let metano,context,ty = List.find (function (m,_,_) -> m=goal) metasenv in match (R.whd context ty) with (C.Appl [(C.MutInd (uri, 0, [])); _; _; _]) when (U.eq uri (U.uri_of_string "cic:/Coq/Init/Logic/eq.ind")) -> PrimitiveTactics.apply_tac ~status:(proof,goal) ~term: (C.Const (U.uri_of_string "cic:/Coq/Init/Logic/sym_eq.con", [])) | (C.Appl [(C.MutInd (uri, 0, [])); _; _; _]) when (U.eq uri (U.uri_of_string "cic:/Coq/Init/Logic_Type/eqT.ind")) -> PrimitiveTactics.apply_tac ~status:(proof,goal) ~term: (C.Const (U.uri_of_string "cic:/Coq/Init/Logic_Type/sym_eqT.con", [])) | _ -> raise (ProofEngineTypes.Fail "Symmetry failed") ;; let transitivity_tac ~term ~status:((proof, goal) as status) = let module C = Cic in let module R = CicReduction in let module U = UriManager in let module T = Tacticals in let (_,metasenv,_,_) = proof in let metano,context,ty = List.find (function (m,_,_) -> m=goal) metasenv in match (R.whd context ty) with (C.Appl [(C.MutInd (uri, 0, [])); _; _; _]) when (uri = (U.uri_of_string "cic:/Coq/Init/Logic/eq.ind")) -> T.thens ~start:(PrimitiveTactics.apply_tac ~term: (C.Const (U.uri_of_string "cic:/Coq/Init/Logic/trans_eq.con", []))) ~continuations: [PrimitiveTactics.exact_tac ~term ; T.id_tac ; T.id_tac] ~status | (C.Appl [(C.MutInd (uri, 0, [])); _; _; _]) when (uri = (U.uri_of_string "cic:/Coq/Init/Logic_Type/eqT.ind")) -> T.thens ~start:(PrimitiveTactics.apply_tac ~term: (C.Const (U.uri_of_string "cic:/Coq/Init/Logic_Type/trans_eqT.con", []))) ~continuations: [T.id_tac ; T.id_tac ; PrimitiveTactics.exact_tac ~term] ~status | _ -> raise (ProofEngineTypes.Fail "Transitivity failed") ;;