(* Copyright (C) 2002, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://cs.unibo.it/helm/. *) let rec rewrite_tac ~direction ~pattern equality = let _rewrite_tac ~direction ~pattern:(wanted,hyps_pat,concl_pat) equality status = let module C = Cic in let module U = UriManager in let module PET = ProofEngineTypes in let module PER = ProofEngineReduction in let module PEH = ProofEngineHelpers in let module PT = PrimitiveTactics in assert (wanted = None); (* this should be checked syntactically *) (*assert (hyps_pat = []); (*CSC: not implemented yet! *)*) let proof,goal = status in let curi, metasenv, pbo, pty = proof in let (metano,context,gty) as conjecture = CicUtil.lookup_meta goal metasenv in match hyps_pat with he::(_::_ as tl) -> PET.apply_tactic (Tacticals.then_ (rewrite_tac ~direction ~pattern:(None,[he],Cic.Implicit None) equality) (rewrite_tac ~direction ~pattern:(None,tl,concl_pat) equality) ) status | [_] as hyps_pat when concl_pat <> Cic.Implicit None -> PET.apply_tactic (Tacticals.then_ (rewrite_tac ~direction ~pattern:(None,hyps_pat,Cic.Implicit None) equality) (rewrite_tac ~direction ~pattern:(None,[],concl_pat) equality) ) status | _ -> let arg,dir2,tac,concl_pat,gty = match hyps_pat with [] -> None,true,PT.exact_tac,concl_pat,gty | [name,pat] -> (*CSC: bug here; I am ignoring the concl_pat *) let rec find_hyp n = function [] -> assert false | Some (Cic.Name s,Cic.Decl ty)::_ when name = s -> Cic.Rel n, CicSubstitution.lift n ty | Some (Cic.Name s,Cic.Def _)::_ -> assert false (*CSC: not implemented yet!*) | _::tl -> find_hyp (n+1) tl in let arg,gty = find_hyp 1 context in let last_hyp_name_of_status (proof,goal) = let curi, metasenv, pbo, pty = proof in let metano,context,gty = CicUtil.lookup_meta goal metasenv in match context with (Some (Cic.Name s,_))::_ -> s | _ -> assert false in let dummy = "dummy" in Some arg,false, (fun ~term -> Tacticals.seq ~tactics: [ProofEngineStructuralRules.rename name dummy; PT.letin_tac ~mk_fresh_name_callback:(fun _ _ _ ~typ -> Cic.Name name) term; ProofEngineStructuralRules.clearbody name; ReductionTactics.simpl_tac ~pattern: (None,[name,Cic.Implicit (Some `Hole)],Cic.Implicit None); ProofEngineStructuralRules.clear dummy ]), pat,gty | _::_ -> assert false in let if_right_to_left do_not_change a b = match direction with | `RightToLeft -> if do_not_change then a else b | `LeftToRight -> if do_not_change then b else a in let ty_eq,ugraph = CicTypeChecker.type_of_aux' metasenv context equality CicUniv.empty_ugraph in let (ty_eq,metasenv',arguments,fresh_meta) = ProofEngineHelpers.saturate_term (ProofEngineHelpers.new_meta_of_proof proof) metasenv context ty_eq 0 in let equality = if List.length arguments = 0 then equality else C.Appl (equality :: arguments) in (* t1x is t2 if we are rewriting in an hypothesis *) let eq_ind, ty, t1, t2, t1x = match ty_eq with | C.Appl [C.MutInd (uri, 0, []); ty; t1; t2] when LibraryObjects.is_eq_URI uri -> let ind_uri = if_right_to_left dir2 LibraryObjects.eq_ind_URI LibraryObjects.eq_ind_r_URI in let eq_ind = C.Const (ind_uri uri,[]) in if dir2 then if_right_to_left true (eq_ind,ty,t2,t1,t2) (eq_ind,ty,t1,t2,t1) else if_right_to_left true (eq_ind,ty,t1,t2,t2) (eq_ind,ty,t2,t1,t1) | _ -> raise (PET.Fail (lazy "Rewrite: argument is not a proof of an equality")) in (* now we always do as if direction was `LeftToRight *) let fresh_name = FreshNamesGenerator.mk_fresh_name ~subst:[] metasenv' context C.Anonymous ~typ:ty in let lifted_t1 = CicSubstitution.lift 1 t1x in let lifted_gty = CicSubstitution.lift 1 gty in let lifted_conjecture = metano,(Some (fresh_name,Cic.Decl ty))::context,lifted_gty in let lifted_pattern = Some (fun _ m u -> lifted_t1, m, u),[],CicSubstitution.lift 1 concl_pat in let subst,metasenv',ugraph,_,selected_terms_with_context = ProofEngineHelpers.select ~metasenv:metasenv' ~ugraph ~conjecture:lifted_conjecture ~pattern:lifted_pattern in let metasenv' = CicMetaSubst.apply_subst_metasenv subst metasenv' in let what,with_what = (* Note: Rel 1 does not live in the context context_of_t *) (* The replace_lifting_csc 0 function will take care of lifting it *) (* to context_of_t *) List.fold_right (fun (context_of_t,t) (l1,l2) -> t::l1, Cic.Rel 1::l2) selected_terms_with_context ([],[]) in let t1 = CicMetaSubst.apply_subst subst t1 in let t2 = CicMetaSubst.apply_subst subst t2 in let equality = CicMetaSubst.apply_subst subst equality in let abstr_gty = ProofEngineReduction.replace_lifting_csc 0 ~equality:(==) ~what ~with_what:with_what ~where:lifted_gty in let abstr_gty = CicMetaSubst.apply_subst subst abstr_gty in let pred = C.Lambda (fresh_name, ty, abstr_gty) in (* The argument is either a meta if we are rewriting in the conclusion or the hypothesis if we are rewriting in an hypothesis *) let metasenv',arg = match arg with None -> let gty' = CicSubstitution.subst t2 abstr_gty in let irl = CicMkImplicit.identity_relocation_list_for_metavariable context in let metasenv' = (fresh_meta,context,gty')::metasenv' in metasenv', C.Meta (fresh_meta,irl) | Some arg -> metasenv,arg in let exact_proof = C.Appl [eq_ind ; ty ; t2 ; pred ; arg ; t1 ;equality] in let (proof',goals) = PET.apply_tactic (tac ~term:exact_proof) ((curi,metasenv',pbo,pty),goal) in let goals = goals@(ProofEngineHelpers.compare_metasenvs ~oldmetasenv:metasenv ~newmetasenv:metasenv') in (proof',goals) in ProofEngineTypes.mk_tactic (_rewrite_tac ~direction ~pattern equality) let rewrite_simpl_tac ~direction ~pattern equality = let rewrite_simpl_tac ~direction ~pattern equality status = ProofEngineTypes.apply_tactic (Tacticals.then_ ~start:(rewrite_tac ~direction ~pattern equality) ~continuation: (ReductionTactics.simpl_tac ~pattern:(ProofEngineTypes.conclusion_pattern None))) status in ProofEngineTypes.mk_tactic (rewrite_simpl_tac ~direction ~pattern equality) ;; let replace_tac ~pattern ~with_what = let replace_tac ~pattern:(wanted,hyps_pat,concl_pat) ~with_what status = let (proof, goal) = status in let module C = Cic in let module U = UriManager in let module P = PrimitiveTactics in let module T = Tacticals in let uri,metasenv,pbo,pty = proof in let (_,context,ty) as conjecture = CicUtil.lookup_meta goal metasenv in assert (hyps_pat = []); (*CSC: not implemented yet *) let context_len = List.length context in let subst,metasenv,u,_,selected_terms_with_context = ProofEngineHelpers.select ~metasenv ~ugraph:CicUniv.empty_ugraph ~conjecture ~pattern in let metasenv = CicMetaSubst.apply_subst_metasenv subst metasenv in let with_what, metasenv, u = with_what context metasenv u in let with_what = CicMetaSubst.apply_subst subst with_what in let pbo = CicMetaSubst.apply_subst subst pbo in let pty = CicMetaSubst.apply_subst subst pty in let status = (uri,metasenv,pbo,pty),goal in let ty_of_with_what,u = CicTypeChecker.type_of_aux' metasenv context with_what CicUniv.empty_ugraph in let whats = match selected_terms_with_context with [] -> raise (ProofEngineTypes.Fail (lazy "Replace: no term selected")) | l -> List.map (fun (context_of_t,t) -> let t_in_context = try let context_of_t_len = List.length context_of_t in if context_of_t_len = context_len then t else (let t_in_context,subst,metasenv' = CicMetaSubst.delift_rels [] metasenv (context_of_t_len - context_len) t in assert (subst = []); assert (metasenv = metasenv'); t_in_context) with CicMetaSubst.DeliftingARelWouldCaptureAFreeVariable -> (*CSC: we could implement something stronger by completely changing the semantics of the tactic *) raise (ProofEngineTypes.Fail (lazy "Replace: one of the selected terms is not closed")) in let ty_of_t_in_context,u = (* TASSI: FIXME *) CicTypeChecker.type_of_aux' metasenv context t_in_context CicUniv.empty_ugraph in let b,u = CicReduction.are_convertible ~metasenv context ty_of_with_what ty_of_t_in_context u in if b then let concl_pat_for_t = ProofEngineHelpers.pattern_of ~term:ty [t] in let pattern_for_t = None,[],concl_pat_for_t in t_in_context,pattern_for_t else raise (ProofEngineTypes.Fail (lazy "Replace: one of the selected terms and the term to be replaced with have not convertible types")) ) l in let rec aux n whats status = match whats with [] -> ProofEngineTypes.apply_tactic T.id_tac status | (what,pattern)::tl -> let what = CicSubstitution.lift n what in let with_what = CicSubstitution.lift n with_what in let ty_of_with_what = CicSubstitution.lift n ty_of_with_what in ProofEngineTypes.apply_tactic (T.thens ~start:( P.cut_tac (C.Appl [ (C.MutInd (LibraryObjects.eq_URI (), 0, [])) ; ty_of_with_what ; what ; with_what])) ~continuations:[ T.then_ ~start:( rewrite_tac ~direction:`LeftToRight ~pattern (C.Rel 1)) ~continuation:( T.then_ ~start:( ProofEngineTypes.mk_tactic (function ((proof,goal) as status) -> let _,metasenv,_,_ = proof in let _,context,_ = CicUtil.lookup_meta goal metasenv in let hyp = try match List.hd context with Some (Cic.Name name,_) -> name | _ -> assert false with (Failure "hd") -> assert false in ProofEngineTypes.apply_tactic (ProofEngineStructuralRules.clear ~hyp) status)) ~continuation:(aux_tac (n + 1) tl)); T.id_tac]) status and aux_tac n tl = ProofEngineTypes.mk_tactic (aux n tl) in aux 0 whats status in ProofEngineTypes.mk_tactic (replace_tac ~pattern ~with_what) ;; (* All these tacs do is applying the right constructor/theorem *) let reflexivity_tac = IntroductionTactics.constructor_tac ~n:1 ;; let symmetry_tac = let symmetry_tac (proof, goal) = let module C = Cic in let module R = CicReduction in let module U = UriManager in let (_,metasenv,_,_) = proof in let metano,context,ty = CicUtil.lookup_meta goal metasenv in match (R.whd context ty) with (C.Appl [(C.MutInd (uri, 0, [])); _; _; _]) when LibraryObjects.is_eq_URI uri -> ProofEngineTypes.apply_tactic (PrimitiveTactics.apply_tac ~term: (C.Const (LibraryObjects.sym_eq_URI uri, []))) (proof,goal) | _ -> raise (ProofEngineTypes.Fail (lazy "Symmetry failed")) in ProofEngineTypes.mk_tactic symmetry_tac ;; let transitivity_tac ~term = let transitivity_tac ~term status = let (proof, goal) = status in let module C = Cic in let module R = CicReduction in let module U = UriManager in let module T = Tacticals in let (_,metasenv,_,_) = proof in let metano,context,ty = CicUtil.lookup_meta goal metasenv in match (R.whd context ty) with (C.Appl [(C.MutInd (uri, 0, [])); _; _; _]) when LibraryObjects.is_eq_URI uri -> ProofEngineTypes.apply_tactic (T.thens ~start:(PrimitiveTactics.apply_tac ~term: (C.Const (LibraryObjects.trans_eq_URI uri, []))) ~continuations: [PrimitiveTactics.exact_tac ~term ; T.id_tac ; T.id_tac]) status | _ -> raise (ProofEngineTypes.Fail (lazy "Transitivity failed")) in ProofEngineTypes.mk_tactic (transitivity_tac ~term) ;;