(* Copyright (C) 2002, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://cs.unibo.it/helm/. *) let rewrite ~term:equality ?where ?(direction=`Left) (proof,goal) = (* let module C = Cic in let module U = UriManager in let module PET = ProofEngineTypes in let module PER = ProofEngineReduction in let module PEH = ProofEngineHelpers in let module PT = PrimitiveTactics in let module HLO = HelmLibraryObjects in let if_left a b = match direction with | `Right -> b | `Left -> a in let curi, metasenv, pbo, pty = proof in let metano, context, gty = CicUtil.lookup_meta goal metasenv in let eq_uri = HLO.Logic.eq_URI in let ty_eq,_ = CicTypeChecker.type_of_aux' metasenv context equality CicUniv.empty_ugraph in let eq_ind, ty, t1, t2 = match ty_eq with | C.Appl [C.MutInd (uri, 0, []); ty; t1; t2] when U.eq uri eq_uri -> let eq_ind = C.Const (if_left HLO.Logic.eq_ind_URI HLO.Logic.eq_ind_r_URI,[]) in if_left (eq_ind, ty, t2, t1) (eq_ind, ty, t1, t2) | _ -> raise (PET.Fail "Rewrite: argument is not a proof of an equality") in (* now we always do as if direction was `Left *) let gty' = CicSubstitution.lift 1 gty in let t1' = CicSubstitution.lift 1 t1 in let eq_kind, what = match where with | None | Some ([], None) -> PER.alpha_equivalence, [t1'] | Some (hp_paths, goal_path) -> assert (hp_paths = []); match goal_path with | None -> assert false (* (==), [t1'] *) | Some path -> let roots = ProofEngineHelpers.select ~term:gty' ~pattern:path in let subterms = List.fold_left ( fun acc (i, r) -> let wanted = CicSubstitution.lift (List.length i) t1' in PEH.find_subterms ~eq:PER.alpha_equivalence ~wanted r @ acc ) [] roots in (==), subterms in let with_what = let rec aux = function | 0 -> [] | n -> C.Rel 1 :: aux (n-1) in aux (List.length what) in let gty'' = ProofEngineReduction.replace_lifting_csc 0 ~equality:eq_kind ~what ~with_what ~where:gty' in let gty_red = CicSubstitution.subst t2 gty'' in let fresh_meta = ProofEngineHelpers.new_meta_of_proof proof in let irl =CicMkImplicit.identity_relocation_list_for_metavariable context in let metasenv' = (fresh_meta,context,gty_red)::metasenv in let fresh_name = FreshNamesGenerator.mk_fresh_name ~subst:[] metasenv context C.Anonymous ~typ:ty in let pred = C.Lambda (fresh_name, ty, gty'') in let exact_proof = C.Appl [eq_ind ; ty ; t2 ; pred ; C.Meta (fresh_meta,irl) ; t1 ;equality] in let (proof',goals) = PET.apply_tactic (PT.exact_tac ~term:exact_proof) ((curi,metasenv',pbo,pty),goal) in assert (List.length goals = 0) ; (proof',[fresh_meta]) *) assert false let rewrite_tac ?where ~term () = let rewrite_tac ?where ~term status = rewrite ?where ~term ~direction:`Right status in ProofEngineTypes.mk_tactic (rewrite_tac ?where ~term) let rewrite_simpl_tac ?where ~term () = let rewrite_simpl_tac ?where ~term status = ProofEngineTypes.apply_tactic (Tacticals.then_ ~start:(rewrite_tac ?where ~term ()) ~continuation: (ReductionTactics.simpl_tac ~pattern:(ProofEngineTypes.conclusion_pattern None))) status in ProofEngineTypes.mk_tactic (rewrite_simpl_tac ~term) ;; let rewrite_back_tac ?where ~term () = let rewrite_back_tac ?where ~term status = rewrite ?where ~term ~direction:`Left status in ProofEngineTypes.mk_tactic (rewrite_back_tac ?where ~term) let rewrite_back_simpl_tac ?where ~term () = let rewrite_back_simpl_tac ?where ~term status = ProofEngineTypes.apply_tactic (Tacticals.then_ ~start:(rewrite_back_tac ?where ~term ()) ~continuation: (ReductionTactics.simpl_tac ~pattern:(ProofEngineTypes.conclusion_pattern None))) status in ProofEngineTypes.mk_tactic (rewrite_back_simpl_tac ~term) ;; let replace_tac ~pattern ~with_what = (* let replace_tac ~pattern ~with_what status = let (proof, goal) = status in let module C = Cic in let module U = UriManager in let module P = PrimitiveTactics in let module T = Tacticals in let _,metasenv,_,_ = proof in let _,context,_ = CicUtil.lookup_meta goal metasenv in let wty,u = (* TASSI: FIXME *) CicTypeChecker.type_of_aux' metasenv context what CicUniv.empty_ugraph in let wwty,_ = CicTypeChecker.type_of_aux' metasenv context with_what u in try if (wty = wwty) then ProofEngineTypes.apply_tactic (T.thens ~start:( P.cut_tac (C.Appl [ (C.MutInd (HelmLibraryObjects.Logic.eq_URI, 0, [])) ; wty ; what ; with_what])) ~continuations:[ T.then_ ~start:(rewrite_simpl_tac ~term:(C.Rel 1) ()) ~continuation:( ProofEngineStructuralRules.clear ~hyp:(List.hd context)) ; T.id_tac]) status else raise (ProofEngineTypes.Fail "Replace: terms not replaceable") with (Failure "hd") -> raise (ProofEngineTypes.Fail "Replace: empty context") in ProofEngineTypes.mk_tactic (replace_tac ~what ~with_what) *) assert false ;; (* All these tacs do is applying the right constructor/theorem *) let reflexivity_tac = IntroductionTactics.constructor_tac ~n:1 ;; let symmetry_tac = let symmetry_tac (proof, goal) = let module C = Cic in let module R = CicReduction in let module U = UriManager in let (_,metasenv,_,_) = proof in let metano,context,ty = CicUtil.lookup_meta goal metasenv in match (R.whd context ty) with (C.Appl [(C.MutInd (uri, 0, [])); _; _; _]) when (U.eq uri HelmLibraryObjects.Logic.eq_URI) -> ProofEngineTypes.apply_tactic (PrimitiveTactics.apply_tac ~term: (C.Const (HelmLibraryObjects.Logic.sym_eq_URI, []))) (proof,goal) | _ -> raise (ProofEngineTypes.Fail "Symmetry failed") in ProofEngineTypes.mk_tactic symmetry_tac ;; let transitivity_tac ~term = let transitivity_tac ~term status = let (proof, goal) = status in let module C = Cic in let module R = CicReduction in let module U = UriManager in let module T = Tacticals in let (_,metasenv,_,_) = proof in let metano,context,ty = CicUtil.lookup_meta goal metasenv in match (R.whd context ty) with (C.Appl [(C.MutInd (uri, 0, [])); _; _; _]) when (uri = HelmLibraryObjects.Logic.eq_URI) -> ProofEngineTypes.apply_tactic (T.thens ~start:(PrimitiveTactics.apply_tac ~term: (C.Const (HelmLibraryObjects.Logic.trans_eq_URI, []))) ~continuations: [PrimitiveTactics.exact_tac ~term ; T.id_tac ; T.id_tac]) status | _ -> raise (ProofEngineTypes.Fail "Transitivity failed") in ProofEngineTypes.mk_tactic (transitivity_tac ~term) ;;