(* Copyright (C) 2002, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://cs.unibo.it/helm/. *) let rewrite_tac ~direction ~pattern equality = let rewrite_tac ~direction ~pattern:(wanted,hyps_pat,concl_pat) equality status = let module C = Cic in let module U = UriManager in let module PET = ProofEngineTypes in let module PER = ProofEngineReduction in let module PEH = ProofEngineHelpers in let module PT = PrimitiveTactics in assert (wanted = None); (* this should be checked syntactically *) assert (hyps_pat = []); (*CSC: not implemented yet! *) let proof,goal = status in let if_right_to_left a b = match direction with | `RightToLeft -> a | `LeftToRight -> b in let curi, metasenv, pbo, pty = proof in let (metano,context,gty) as conjecture = CicUtil.lookup_meta goal metasenv in let ty_eq,ugraph = CicTypeChecker.type_of_aux' metasenv context equality CicUniv.empty_ugraph in let (ty_eq,metasenv,arguments,fresh_meta) = ProofEngineHelpers.saturate_term (ProofEngineHelpers.new_meta_of_proof proof) metasenv context ty_eq in let equality = if List.length arguments = 0 then equality else C.Appl (equality :: arguments) in let eq_ind, ty, t1, t2 = match ty_eq with | C.Appl [C.MutInd (uri, 0, []); ty; t1; t2] when LibraryObjects.is_eq_URI uri -> let ind_uri = if_right_to_left LibraryObjects.eq_ind_URI LibraryObjects.eq_ind_r_URI in let eq_ind = C.Const (ind_uri uri,[]) in if_right_to_left (eq_ind, ty, t2, t1) (eq_ind, ty, t1, t2) | _ -> raise (PET.Fail "Rewrite: argument is not a proof of an equality") in (* now we always do as if direction was `LeftToRight *) let fresh_name = FreshNamesGenerator.mk_fresh_name ~subst:[] metasenv context C.Anonymous ~typ:ty in let lifted_t1 = CicSubstitution.lift 1 t1 in let lifted_gty = CicSubstitution.lift 1 gty in let lifted_conjecture = metano,(Some (fresh_name,Cic.Decl ty))::context,lifted_gty in let lifted_pattern = Some lifted_t1,[],CicSubstitution.lift 1 concl_pat in let subst,metasenv,ugraph,_,selected_terms_with_context = ProofEngineHelpers.select ~metasenv ~ugraph ~conjecture:lifted_conjecture ~pattern:lifted_pattern in let metasenv = CicMetaSubst.apply_subst_metasenv subst metasenv in let what,with_what = (* Note: Rel 1 does not live in the context context_of_t *) (* The replace_lifting_csc_0 function will take care of lifting it *) (* to context_of_t *) List.fold_right (fun (context_of_t,t) (l1,l2) -> t::l1, Cic.Rel 1::l2) selected_terms_with_context ([],[]) in let abstr_gty = ProofEngineReduction.replace_lifting_csc 0 ~equality:(==) ~what ~with_what:with_what ~where:lifted_gty in let abstr_gty = CicMetaSubst.apply_subst subst abstr_gty in let t1 = CicMetaSubst.apply_subst subst t1 in let t2 = CicMetaSubst.apply_subst subst t2 in let equality = CicMetaSubst.apply_subst subst equality in let gty' = CicSubstitution.subst t2 abstr_gty in let irl = CicMkImplicit.identity_relocation_list_for_metavariable context in let metasenv' = (fresh_meta,context,gty')::metasenv in let pred = C.Lambda (fresh_name, ty, abstr_gty) in let exact_proof = C.Appl [eq_ind ; ty ; t2 ; pred ; C.Meta (fresh_meta,irl) ; t1 ;equality] in let (proof',goals) = PET.apply_tactic (PT.exact_tac ~term:exact_proof) ((curi,metasenv',pbo,pty),goal) in assert (List.length goals = 0) ; (proof',[fresh_meta]) in ProofEngineTypes.mk_tactic (rewrite_tac ~direction ~pattern equality) let rewrite_simpl_tac ~direction ~pattern equality = let rewrite_simpl_tac ~direction ~pattern equality status = ProofEngineTypes.apply_tactic (Tacticals.then_ ~start:(rewrite_tac ~direction ~pattern equality) ~continuation: (ReductionTactics.simpl_tac ~pattern:(ProofEngineTypes.conclusion_pattern None))) status in ProofEngineTypes.mk_tactic (rewrite_simpl_tac ~direction ~pattern equality) ;; let replace_tac ~pattern ~with_what = (* let replace_tac ~pattern:(wanted,hyps_pat,concl_pat) ~with_what status = let (proof, goal) = status in let module C = Cic in let module U = UriManager in let module P = PrimitiveTactics in let module T = Tacticals in let _,metasenv,_,_ = proof in let (_,context,ty) as conjecture = CicUtil.lookup_meta goal metasenv in assert (hyps_pat = []); (*CSC: not implemented yet *) let context_len = List.length context in let _,selected_terms_with_context = ProofEngineHelpers.select ~metasenv ~conjecture ~pattern in let ty_of_with_what,u = CicTypeChecker.type_of_aux' metasenv context with_what CicUniv.empty_ugraph in let whats = match selected_terms_with_context with [] -> raise (ProofEngineTypes.Fail "Replace: no term selected") | l -> List.map (fun (context_of_t,t) -> let t_in_context = try let context_of_t_len = List.length context_of_t in if context_of_t_len = context_len then t else (let t_in_context,subst,metasenv' = CicMetaSubst.delift_rels [] metasenv (context_of_t_len - context_len) t in assert (subst = []); assert (metasenv = metasenv'); t_in_context) with CicMetaSubst.DeliftingARelWouldCaptureAFreeVariable -> (*CSC: we could implement something stronger by completely changing the semantics of the tactic *) raise (ProofEngineTypes.Fail "Replace: one of the selected terms is not closed") in let ty_of_t_in_context,u = (* TASSI: FIXME *) CicTypeChecker.type_of_aux' metasenv context t_in_context CicUniv.empty_ugraph in let b,u = CicReduction.are_convertible ~metasenv context ty_of_with_what ty_of_t_in_context u in if b then let concl_pat_for_t = ProofEngineHelpers.pattern_of ~term:ty [t] in let pattern_for_t = None,[],concl_pat_for_t in t_in_context,pattern_for_t else raise (ProofEngineTypes.Fail "Replace: one of the selected terms and the term to be replaced with have not convertible types") ) l in let rec aux n whats status = match whats with [] -> ProofEngineTypes.apply_tactic T.id_tac status | (what,pattern)::tl -> let what = CicSubstitution.lift n what in let with_what = CicSubstitution.lift n with_what in let ty_of_with_what = CicSubstitution.lift n ty_of_with_what in ProofEngineTypes.apply_tactic (T.thens ~start:( P.cut_tac (C.Appl [ (C.MutInd (LibraryObjects.eq_URI (), 0, [])) ; ty_of_with_what ; what ; with_what])) ~continuations:[ T.then_ ~start:( rewrite_tac ~direction:`LeftToRight ~pattern (C.Rel 1)) ~continuation:( T.then_ ~start:( ProofEngineTypes.mk_tactic (function ((proof,goal) as status) -> let _,metasenv,_,_ = proof in let _,context,_ = CicUtil.lookup_meta goal metasenv in let hyp = try match List.hd context with Some (Cic.Name name,_) -> name | _ -> assert false with (Failure "hd") -> assert false in ProofEngineTypes.apply_tactic (ProofEngineStructuralRules.clear ~hyp) status)) ~continuation:(aux_tac (n + 1) tl)); T.id_tac]) status and aux_tac n tl = ProofEngineTypes.mk_tactic (aux n tl) in aux 0 whats status in ProofEngineTypes.mk_tactic (replace_tac ~pattern ~with_what) *) assert false ;; (* All these tacs do is applying the right constructor/theorem *) let reflexivity_tac = IntroductionTactics.constructor_tac ~n:1 ;; let symmetry_tac = let symmetry_tac (proof, goal) = let module C = Cic in let module R = CicReduction in let module U = UriManager in let (_,metasenv,_,_) = proof in let metano,context,ty = CicUtil.lookup_meta goal metasenv in match (R.whd context ty) with (C.Appl [(C.MutInd (uri, 0, [])); _; _; _]) when LibraryObjects.is_eq_URI uri -> ProofEngineTypes.apply_tactic (PrimitiveTactics.apply_tac ~term: (C.Const (LibraryObjects.sym_eq_URI uri, []))) (proof,goal) | _ -> raise (ProofEngineTypes.Fail "Symmetry failed") in ProofEngineTypes.mk_tactic symmetry_tac ;; let transitivity_tac ~term = let transitivity_tac ~term status = let (proof, goal) = status in let module C = Cic in let module R = CicReduction in let module U = UriManager in let module T = Tacticals in let (_,metasenv,_,_) = proof in let metano,context,ty = CicUtil.lookup_meta goal metasenv in match (R.whd context ty) with (C.Appl [(C.MutInd (uri, 0, [])); _; _; _]) when LibraryObjects.is_eq_URI uri -> ProofEngineTypes.apply_tactic (T.thens ~start:(PrimitiveTactics.apply_tac ~term: (C.Const (LibraryObjects.trans_eq_URI uri, []))) ~continuations: [PrimitiveTactics.exact_tac ~term ; T.id_tac ; T.id_tac]) status | _ -> raise (ProofEngineTypes.Fail "Transitivity failed") in ProofEngineTypes.mk_tactic (transitivity_tac ~term) ;;