(* Copyright (C) 2002, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://cs.unibo.it/helm/. *) open ProofEngineHelpers open ProofEngineTypes exception TheTypeOfTheCurrentGoalIsAMetaICannotChooseTheRightElimiantionPrinciple exception NotAnInductiveTypeToEliminate exception WrongUriToVariable of string (* lambda_abstract newmeta ty *) (* returns a triple [bo],[context],[ty'] where *) (* [ty] = Pi/LetIn [context].[ty'] ([context] is a vector!) *) (* and [bo] = Lambda/LetIn [context].(Meta [newmeta]) *) (* So, lambda_abstract is the core of the implementation of *) (* the Intros tactic. *) (* howmany = -1 means Intros, howmany > 0 means Intros n *) let lambda_abstract ?(howmany=(-1)) metasenv context newmeta ty mk_fresh_name = let module C = Cic in let rec collect_context context howmany ty = match howmany with | 0 -> let irl = CicMkImplicit.identity_relocation_list_for_metavariable context in context, ty, (C.Meta (newmeta,irl)) | _ -> match ty with C.Cast (te,_) -> collect_context context howmany te | C.Prod (n,s,t) -> let n' = mk_fresh_name metasenv context n ~typ:s in let (context',ty,bo) = collect_context ((Some (n',(C.Decl s)))::context) (howmany - 1) t in (context',ty,C.Lambda(n',s,bo)) | C.LetIn (n,s,t) -> let (context',ty,bo) = collect_context ((Some (n,(C.Def (s,None))))::context) (howmany - 1) t in (context',ty,C.LetIn(n,s,bo)) | _ as t -> if howmany <= 0 then let irl = CicMkImplicit.identity_relocation_list_for_metavariable context in context, t, (C.Meta (newmeta,irl)) else raise (Fail (lazy "intro(s): not enough products or let-ins")) in collect_context context howmany ty let eta_expand metasenv context t arg = let module T = CicTypeChecker in let module S = CicSubstitution in let module C = Cic in let rec aux n = function t' when t' = S.lift n arg -> C.Rel (1 + n) | C.Rel m -> if m <= n then C.Rel m else C.Rel (m+1) | C.Var (uri,exp_named_subst) -> let exp_named_subst' = aux_exp_named_subst n exp_named_subst in C.Var (uri,exp_named_subst') | C.Meta (i,l) -> let l' = List.map (function None -> None | Some t -> Some (aux n t)) l in C.Meta (i, l') | C.Sort _ | C.Implicit _ as t -> t | C.Cast (te,ty) -> C.Cast (aux n te, aux n ty) | C.Prod (nn,s,t) -> C.Prod (nn, aux n s, aux (n+1) t) | C.Lambda (nn,s,t) -> C.Lambda (nn, aux n s, aux (n+1) t) | C.LetIn (nn,s,t) -> C.LetIn (nn, aux n s, aux (n+1) t) | C.Appl l -> C.Appl (List.map (aux n) l) | C.Const (uri,exp_named_subst) -> let exp_named_subst' = aux_exp_named_subst n exp_named_subst in C.Const (uri,exp_named_subst') | C.MutInd (uri,i,exp_named_subst) -> let exp_named_subst' = aux_exp_named_subst n exp_named_subst in C.MutInd (uri,i,exp_named_subst') | C.MutConstruct (uri,i,j,exp_named_subst) -> let exp_named_subst' = aux_exp_named_subst n exp_named_subst in C.MutConstruct (uri,i,j,exp_named_subst') | C.MutCase (sp,i,outt,t,pl) -> C.MutCase (sp,i,aux n outt, aux n t, List.map (aux n) pl) | C.Fix (i,fl) -> let tylen = List.length fl in let substitutedfl = List.map (fun (name,i,ty,bo) -> (name, i, aux n ty, aux (n+tylen) bo)) fl in C.Fix (i, substitutedfl) | C.CoFix (i,fl) -> let tylen = List.length fl in let substitutedfl = List.map (fun (name,ty,bo) -> (name, aux n ty, aux (n+tylen) bo)) fl in C.CoFix (i, substitutedfl) and aux_exp_named_subst n = List.map (function uri,t -> uri,aux n t) in let argty,_ = T.type_of_aux' metasenv context arg CicUniv.empty_ugraph (* TASSI: FIXME *) in let fresh_name = FreshNamesGenerator.mk_fresh_name ~subst:[] metasenv context (Cic.Name "Heta") ~typ:argty in (C.Appl [C.Lambda (fresh_name,argty,aux 0 t) ; arg]) (*CSC: ma serve solamente la prima delle new_uninst e l'unione delle due!!! *) let classify_metas newmeta in_subst_domain subst_in metasenv = List.fold_right (fun (i,canonical_context,ty) (old_uninst,new_uninst) -> if in_subst_domain i then old_uninst,new_uninst else let ty' = subst_in canonical_context ty in let canonical_context' = List.fold_right (fun entry canonical_context' -> let entry' = match entry with Some (n,Cic.Decl s) -> Some (n,Cic.Decl (subst_in canonical_context' s)) | Some (n,Cic.Def (s,None)) -> Some (n,Cic.Def ((subst_in canonical_context' s),None)) | None -> None | Some (n,Cic.Def (bo,Some ty)) -> Some (n, Cic.Def (subst_in canonical_context' bo, Some (subst_in canonical_context' ty))) in entry'::canonical_context' ) canonical_context [] in if i < newmeta then ((i,canonical_context',ty')::old_uninst),new_uninst else old_uninst,((i,canonical_context',ty')::new_uninst) ) metasenv ([],[]) (* Useful only inside apply_tac *) let generalize_exp_named_subst_with_fresh_metas context newmeta uri exp_named_subst = let module C = Cic in let params = let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in CicUtil.params_of_obj o in let exp_named_subst_diff,new_fresh_meta,newmetasenvfragment,exp_named_subst'= let next_fresh_meta = ref newmeta in let newmetasenvfragment = ref [] in let exp_named_subst_diff = ref [] in let rec aux = function [],[] -> [] | uri::tl,[] -> let ty = let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in match o with C.Variable (_,_,ty,_,_) -> CicSubstitution.subst_vars !exp_named_subst_diff ty | _ -> raise (WrongUriToVariable (UriManager.string_of_uri uri)) in (* CSC: patch to generate ?1 : ?2 : Type in place of ?1 : Type to simulate ?1 :< Type (match ty with C.Sort (C.Type _) as s -> (* TASSI: ?? *) let fresh_meta = !next_fresh_meta in let fresh_meta' = fresh_meta + 1 in next_fresh_meta := !next_fresh_meta + 2 ; let subst_item = uri,C.Meta (fresh_meta',[]) in newmetasenvfragment := (fresh_meta,[],C.Sort (C.Type (CicUniv.fresh()))) :: (* TASSI: ?? *) (fresh_meta',[],C.Meta (fresh_meta,[])) :: !newmetasenvfragment ; exp_named_subst_diff := !exp_named_subst_diff @ [subst_item] ; subst_item::(aux (tl,[])) | _ -> *) let irl = CicMkImplicit.identity_relocation_list_for_metavariable context in let subst_item = uri,C.Meta (!next_fresh_meta,irl) in newmetasenvfragment := (!next_fresh_meta,context,ty)::!newmetasenvfragment ; exp_named_subst_diff := !exp_named_subst_diff @ [subst_item] ; incr next_fresh_meta ; subst_item::(aux (tl,[]))(*)*) | uri::tl1,((uri',_) as s)::tl2 -> assert (UriManager.eq uri uri') ; s::(aux (tl1,tl2)) | [],_ -> assert false in let exp_named_subst' = aux (params,exp_named_subst) in !exp_named_subst_diff,!next_fresh_meta, List.rev !newmetasenvfragment, exp_named_subst' in new_fresh_meta,newmetasenvfragment,exp_named_subst',exp_named_subst_diff ;; let new_metasenv_and_unify_and_t newmeta' metasenv' context term' ty termty goal_arity = let (consthead,newmetasenv,arguments,_) = saturate_term newmeta' metasenv' context termty goal_arity in let subst,newmetasenv',_ = CicUnification.fo_unif newmetasenv context consthead ty CicUniv.empty_ugraph in let t = if List.length arguments = 0 then term' else Cic.Appl (term'::arguments) in subst,newmetasenv',t let rec count_prods context ty = match CicReduction.whd context ty with Cic.Prod (n,s,t) -> 1 + count_prods (Some (n,Cic.Decl s)::context) t | _ -> 0 let apply_tac_verbose_with_subst ~term (proof, goal) = (* Assumption: The term "term" must be closed in the current context *) let module T = CicTypeChecker in let module R = CicReduction in let module C = Cic in let (_,metasenv,_,_) = proof in let metano,context,ty = CicUtil.lookup_meta goal metasenv in let newmeta = new_meta_of_proof ~proof in let exp_named_subst_diff,newmeta',newmetasenvfragment,term' = match term with C.Var (uri,exp_named_subst) -> let newmeta',newmetasenvfragment,exp_named_subst',exp_named_subst_diff = generalize_exp_named_subst_with_fresh_metas context newmeta uri exp_named_subst in exp_named_subst_diff,newmeta',newmetasenvfragment, C.Var (uri,exp_named_subst') | C.Const (uri,exp_named_subst) -> let newmeta',newmetasenvfragment,exp_named_subst',exp_named_subst_diff = generalize_exp_named_subst_with_fresh_metas context newmeta uri exp_named_subst in exp_named_subst_diff,newmeta',newmetasenvfragment, C.Const (uri,exp_named_subst') | C.MutInd (uri,tyno,exp_named_subst) -> let newmeta',newmetasenvfragment,exp_named_subst',exp_named_subst_diff = generalize_exp_named_subst_with_fresh_metas context newmeta uri exp_named_subst in exp_named_subst_diff,newmeta',newmetasenvfragment, C.MutInd (uri,tyno,exp_named_subst') | C.MutConstruct (uri,tyno,consno,exp_named_subst) -> let newmeta',newmetasenvfragment,exp_named_subst',exp_named_subst_diff = generalize_exp_named_subst_with_fresh_metas context newmeta uri exp_named_subst in exp_named_subst_diff,newmeta',newmetasenvfragment, C.MutConstruct (uri,tyno,consno,exp_named_subst') | _ -> [],newmeta,[],term in let metasenv' = metasenv@newmetasenvfragment in let termty,_ = CicTypeChecker.type_of_aux' metasenv' context term' CicUniv.empty_ugraph in let termty = CicSubstitution.subst_vars exp_named_subst_diff termty in let goal_arity = count_prods context ty in let subst,newmetasenv',t = let rec add_one_argument n = try new_metasenv_and_unify_and_t newmeta' metasenv' context term' ty termty n with CicUnification.UnificationFailure _ when n > 0 -> add_one_argument (n - 1) in add_one_argument goal_arity in let in_subst_domain i = List.exists (function (j,_) -> i=j) subst in let apply_subst = CicMetaSubst.apply_subst subst in let old_uninstantiatedmetas,new_uninstantiatedmetas = (* subst_in doesn't need the context. Hence the underscore. *) let subst_in _ = CicMetaSubst.apply_subst subst in classify_metas newmeta in_subst_domain subst_in newmetasenv' in let bo' = apply_subst t in let newmetasenv'' = new_uninstantiatedmetas@old_uninstantiatedmetas in let subst_in = (* if we just apply the subtitution, the type is irrelevant: we may use Implicit, since it will be dropped *) CicMetaSubst.apply_subst ((metano,(context,bo',Cic.Implicit None))::subst) in let (newproof, newmetasenv''') = subst_meta_and_metasenv_in_proof proof metano subst_in newmetasenv'' in (((metano,(context,bo',Cic.Implicit None))::subst)(* subst_in *), (* ALB *) (newproof, List.map (function (i,_,_) -> i) new_uninstantiatedmetas)) (* ALB *) let apply_tac_verbose_with_subst ~term status = try (* apply_tac_verbose ~term status *) apply_tac_verbose_with_subst ~term status (* TODO cacciare anche altre eccezioni? *) with | CicUnification.UnificationFailure msg | CicTypeChecker.TypeCheckerFailure msg -> raise (Fail msg) (* ALB *) let apply_tac_verbose ~term status = let subst, status = apply_tac_verbose_with_subst ~term status in (CicMetaSubst.apply_subst subst), status let apply_tac ~term status = snd (apply_tac_verbose ~term status) (* TODO per implementare i tatticali e' necessario che tutte le tattiche sollevino _solamente_ Fail *) let apply_tac ~term = let apply_tac ~term status = try apply_tac ~term status (* TODO cacciare anche altre eccezioni? *) with | CicUnification.UnificationFailure msg | CicTypeChecker.TypeCheckerFailure msg -> raise (Fail msg) in mk_tactic (apply_tac ~term) let intros_tac ?howmany ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name ~subst:[]) ()= let intros_tac ?(mk_fresh_name_callback = (FreshNamesGenerator.mk_fresh_name ~subst:[])) () (proof, goal) = let module C = Cic in let module R = CicReduction in let (_,metasenv,_,_) = proof in let metano,context,ty = CicUtil.lookup_meta goal metasenv in let newmeta = new_meta_of_proof ~proof in let (context',ty',bo') = lambda_abstract ?howmany metasenv context newmeta ty mk_fresh_name_callback in let (newproof, _) = subst_meta_in_proof proof metano bo' [newmeta,context',ty'] in (newproof, [newmeta]) in mk_tactic (intros_tac ~mk_fresh_name_callback ()) let cut_tac ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name ~subst:[]) term = let cut_tac ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name ~subst:[]) term (proof, goal) = let module C = Cic in let curi,metasenv,pbo,pty = proof in let metano,context,ty = CicUtil.lookup_meta goal metasenv in let newmeta1 = new_meta_of_proof ~proof in let newmeta2 = newmeta1 + 1 in let fresh_name = mk_fresh_name_callback metasenv context (Cic.Name "Hcut") ~typ:term in let context_for_newmeta1 = (Some (fresh_name,C.Decl term))::context in let irl1 = CicMkImplicit.identity_relocation_list_for_metavariable context_for_newmeta1 in let irl2 = CicMkImplicit.identity_relocation_list_for_metavariable context in let newmeta1ty = CicSubstitution.lift 1 ty in let bo' = C.Appl [C.Lambda (fresh_name,term,C.Meta (newmeta1,irl1)) ; C.Meta (newmeta2,irl2)] in let (newproof, _) = subst_meta_in_proof proof metano bo' [newmeta2,context,term; newmeta1,context_for_newmeta1,newmeta1ty]; in (newproof, [newmeta1 ; newmeta2]) in mk_tactic (cut_tac ~mk_fresh_name_callback term) let letin_tac ?(mk_fresh_name_callback=FreshNamesGenerator.mk_fresh_name ~subst:[]) term = let letin_tac ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name ~subst:[]) term (proof, goal) = let module C = Cic in let curi,metasenv,pbo,pty = proof in let metano,context,ty = CicUtil.lookup_meta goal metasenv in let _,_ = (* TASSI: FIXME *) CicTypeChecker.type_of_aux' metasenv context term CicUniv.empty_ugraph in let newmeta = new_meta_of_proof ~proof in let fresh_name = mk_fresh_name_callback metasenv context (Cic.Name "Hletin") ~typ:term in let context_for_newmeta = (Some (fresh_name,C.Def (term,None)))::context in let irl = CicMkImplicit.identity_relocation_list_for_metavariable context_for_newmeta in let newmetaty = CicSubstitution.lift 1 ty in let bo' = C.LetIn (fresh_name,term,C.Meta (newmeta,irl)) in let (newproof, _) = subst_meta_in_proof proof metano bo'[newmeta,context_for_newmeta,newmetaty] in (newproof, [newmeta]) in mk_tactic (letin_tac ~mk_fresh_name_callback term) (** functional part of the "exact" tactic *) let exact_tac ~term = let exact_tac ~term (proof, goal) = (* Assumption: the term bo must be closed in the current context *) let (_,metasenv,_,_) = proof in let metano,context,ty = CicUtil.lookup_meta goal metasenv in let module T = CicTypeChecker in let module R = CicReduction in let ty_term,u = T.type_of_aux' metasenv context term CicUniv.empty_ugraph in let b,_ = R.are_convertible context ty_term ty u in (* TASSI: FIXME *) if b then begin let (newproof, metasenv') = subst_meta_in_proof proof metano term [] in (newproof, []) end else raise (Fail (lazy "The type of the provided term is not the one expected.")) in mk_tactic (exact_tac ~term) (* not really "primitive" tactics .... *) let elim_tac ~term = let elim_tac ~term (proof, goal) = let module T = CicTypeChecker in let module U = UriManager in let module R = CicReduction in let module C = Cic in let (curi,metasenv,proofbo,proofty) = proof in let metano,context,ty = CicUtil.lookup_meta goal metasenv in let termty,_ = T.type_of_aux' metasenv context term CicUniv.empty_ugraph in let (termty,metasenv',arguments,fresh_meta) = ProofEngineHelpers.saturate_term (ProofEngineHelpers.new_meta_of_proof proof) metasenv context termty 0 in let term = if arguments = [] then term else Cic.Appl (term::arguments) in let uri,exp_named_subst,typeno,args = match termty with C.MutInd (uri,typeno,exp_named_subst) -> (uri,exp_named_subst,typeno,[]) | C.Appl ((C.MutInd (uri,typeno,exp_named_subst))::args) -> (uri,exp_named_subst,typeno,args) | _ -> raise NotAnInductiveTypeToEliminate in let eliminator_uri = let buri = U.buri_of_uri uri in let name = let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in match o with C.InductiveDefinition (tys,_,_,_) -> let (name,_,_,_) = List.nth tys typeno in name | _ -> assert false in let ty_ty,_ = T.type_of_aux' metasenv' context ty CicUniv.empty_ugraph in let ext = match ty_ty with C.Sort C.Prop -> "_ind" | C.Sort C.Set -> "_rec" | C.Sort C.CProp -> "_rec" | C.Sort (C.Type _)-> "_rect" | C.Meta (_,_) -> raise TheTypeOfTheCurrentGoalIsAMetaICannotChooseTheRightElimiantionPrinciple | _ -> assert false in U.uri_of_string (buri ^ "/" ^ name ^ ext ^ ".con") in let eliminator_ref = C.Const (eliminator_uri,exp_named_subst) in let ety,_ = T.type_of_aux' metasenv' context eliminator_ref CicUniv.empty_ugraph in let rec find_args_no = function C.Prod (_,_,t) -> 1 + find_args_no t | C.Cast (s,_) -> find_args_no s | C.LetIn (_,_,t) -> 0 + find_args_no t | _ -> 0 in let args_no = find_args_no ety in let term_to_refine = let rec make_tl base_case = function 0 -> [base_case] | n -> (C.Implicit None)::(make_tl base_case (n - 1)) in C.Appl (eliminator_ref :: make_tl term (args_no - 1)) in let refined_term,_,metasenv'',_ = CicRefine.type_of_aux' metasenv' context term_to_refine CicUniv.empty_ugraph in let new_goals = ProofEngineHelpers.compare_metasenvs ~oldmetasenv:metasenv ~newmetasenv:metasenv'' in let proof' = curi,metasenv'',proofbo,proofty in let proof'', new_goals' = apply_tactic (apply_tac ~term:refined_term) (proof',goal) in (* The apply_tactic can have closed some of the new_goals *) let patched_new_goals = let (_,metasenv''',_,_) = proof'' in List.filter (function i -> List.exists (function (j,_,_) -> j=i) metasenv''' ) new_goals @ new_goals' in proof'', patched_new_goals in mk_tactic (elim_tac ~term) ;; let elim_intros_tac ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name ~subst:[]) ?depth ?using what = Tacticals.then_ ~start:(elim_tac ~term:what) ~continuation:(intros_tac ~mk_fresh_name_callback ?howmany:depth ()) ;; (* The simplification is performed only on the conclusion *) let elim_intros_simpl_tac ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name ~subst:[]) ?depth ?using what = Tacticals.then_ ~start:(elim_tac ~term:what) ~continuation: (Tacticals.thens ~start:(intros_tac ~mk_fresh_name_callback ?howmany:depth ()) ~continuations: [ReductionTactics.simpl_tac ~pattern:(ProofEngineTypes.conclusion_pattern None)]) ;;