(* Copyright (C) 2002, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://cs.unibo.it/helm/. *) exception Bad_pattern of string Lazy.t let new_meta_of_proof ~proof:(_, metasenv, _, _) = CicMkImplicit.new_meta metasenv [] let subst_meta_in_proof proof meta term newmetasenv = let uri,metasenv,bo,ty = proof in (* empty context is ok for term since it wont be used by apply_subst *) (* hack: since we do not know the context and the type of term, we create a substitution with cc =[] and type = Implicit; they will be in any case dropped by apply_subst, but it would be better to rewrite the code. Cannot we just use apply_subst_metasenv, etc. ?? *) let subst_in = CicMetaSubst.apply_subst [meta,([], term,Cic.Implicit None)] in let metasenv' = newmetasenv @ (List.filter (function (m,_,_) -> m <> meta) metasenv) in let metasenv'' = List.map (function i,canonical_context,ty -> let canonical_context' = List.map (function Some (n,Cic.Decl s) -> Some (n,Cic.Decl (subst_in s)) | Some (n,Cic.Def (s,None)) -> Some (n,Cic.Def (subst_in s,None)) | None -> None | Some (n,Cic.Def (bo,Some ty)) -> Some (n,Cic.Def (subst_in bo,Some (subst_in ty))) ) canonical_context in i,canonical_context',(subst_in ty) ) metasenv' in let bo' = subst_in bo in (* Metavariables can appear also in the *statement* of the theorem * since the parser does not reject as statements terms with * metavariable therein *) let ty' = subst_in ty in let newproof = uri,metasenv'',bo',ty' in (newproof, metasenv'') (*CSC: commento vecchio *) (* refine_meta_with_brand_new_metasenv meta term subst_in newmetasenv *) (* This (heavy) function must be called when a tactic can instantiate old *) (* metavariables (i.e. existential variables). It substitues the metasenv *) (* of the proof with the result of removing [meta] from the domain of *) (* [newmetasenv]. Then it replaces Cic.Meta [meta] with [term] everywhere *) (* in the current proof. Finally it applies [apply_subst_replacing] to *) (* current proof. *) (*CSC: A questo punto perche' passare un bo' gia' istantiato, se tanto poi *) (*CSC: ci ripasso sopra apply_subst!!! *) (*CSC: Attenzione! Ora questa funzione applica anche [subst_in] a *) (*CSC: [newmetasenv]. *) let subst_meta_and_metasenv_in_proof proof meta subst_in newmetasenv = let (uri,_,bo,ty) = proof in let bo' = subst_in bo in (* Metavariables can appear also in the *statement* of the theorem * since the parser does not reject as statements terms with * metavariable therein *) let ty' = subst_in ty in let metasenv' = List.fold_right (fun metasenv_entry i -> match metasenv_entry with (m,canonical_context,ty) when m <> meta -> let canonical_context' = List.map (function None -> None | Some (i,Cic.Decl t) -> Some (i,Cic.Decl (subst_in t)) | Some (i,Cic.Def (t,None)) -> Some (i,Cic.Def (subst_in t,None)) | Some (i,Cic.Def (bo,Some ty)) -> Some (i,Cic.Def (subst_in bo,Some (subst_in ty))) ) canonical_context in (m,canonical_context',subst_in ty)::i | _ -> i ) newmetasenv [] in let newproof = uri,metasenv',bo',ty' in (newproof, metasenv') let compare_metasenvs ~oldmetasenv ~newmetasenv = List.map (function (i,_,_) -> i) (List.filter (function (i,_,_) -> not (List.exists (fun (j,_,_) -> i=j) oldmetasenv)) newmetasenv) ;; (** finds the _pointers_ to subterms that are alpha-equivalent to wanted in t *) let find_subterms ~subst ~metasenv ~ugraph ~wanted ~context t = let rec find subst metasenv ugraph context w t = try let subst,metasenv,ugraph = CicUnification.fo_unif_subst subst context metasenv w t ugraph in subst,metasenv,ugraph,[context,t] with CicUnification.UnificationFailure _ | CicUnification.Uncertain _ -> match t with | Cic.Sort _ | Cic.Rel _ -> subst,metasenv,ugraph,[] | Cic.Meta (_, ctx) -> List.fold_left ( fun (subst,metasenv,ugraph,acc) e -> match e with | None -> subst,metasenv,ugraph,acc | Some t -> let subst,metasenv,ugraph,res = find subst metasenv ugraph context w t in subst,metasenv,ugraph, res @ acc ) (subst,metasenv,ugraph,[]) ctx | Cic.Lambda (name, t1, t2) | Cic.Prod (name, t1, t2) -> let subst,metasenv,ugraph,rest1 = find subst metasenv ugraph context w t1 in let subst,metasenv,ugraph,rest2 = find subst metasenv ugraph (Some (name, Cic.Decl t1)::context) (CicSubstitution.lift 1 w) t2 in subst,metasenv,ugraph,rest1 @ rest2 | Cic.LetIn (name, t1, t2) -> let subst,metasenv,ugraph,rest1 = find subst metasenv ugraph context w t1 in let subst,metasenv,ugraph,rest2 = find subst metasenv ugraph (Some (name, Cic.Def (t1,None))::context) (CicSubstitution.lift 1 w) t2 in subst,metasenv,ugraph,rest1 @ rest2 | Cic.Appl l -> List.fold_left (fun (subst,metasenv,ugraph,acc) t -> let subst,metasenv,ugraph,res = find subst metasenv ugraph context w t in subst,metasenv,ugraph,res @ acc) (subst,metasenv,ugraph,[]) l | Cic.Cast (t, ty) -> let subst,metasenv,ugraph,rest = find subst metasenv ugraph context w t in let subst,metasenv,ugraph,resty = find subst metasenv ugraph context w ty in subst,metasenv,ugraph,rest @ resty | Cic.Implicit _ -> assert false | Cic.Const (_, esubst) | Cic.Var (_, esubst) | Cic.MutInd (_, _, esubst) | Cic.MutConstruct (_, _, _, esubst) -> List.fold_left (fun (subst,metasenv,ugraph,acc) (_, t) -> let subst,metasenv,ugraph,res = find subst metasenv ugraph context w t in subst,metasenv,ugraph,res @ acc) (subst,metasenv,ugraph,[]) esubst | Cic.MutCase (_, _, outty, indterm, patterns) -> let subst,metasenv,ugraph,resoutty = find subst metasenv ugraph context w outty in let subst,metasenv,ugraph,resindterm = find subst metasenv ugraph context w indterm in let subst,metasenv,ugraph,respatterns = List.fold_left (fun (subst,metasenv,ugraph,acc) p -> let subst,metaseng,ugraph,res = find subst metasenv ugraph context w p in subst,metasenv,ugraph,res @ acc ) (subst,metasenv,ugraph,[]) patterns in subst,metasenv,ugraph,resoutty @ resindterm @ respatterns | Cic.Fix (_, funl) -> let tys = List.map (fun (n,_,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) funl in List.fold_left ( fun (subst,metasenv,ugraph,acc) (_, _, ty, bo) -> let subst,metasenv,ugraph,resty = find subst metasenv ugraph context w ty in let subst,metasenv,ugraph,resbo = find subst metasenv ugraph (tys @ context) w bo in subst,metasenv,ugraph, resty @ resbo @ acc ) (subst,metasenv,ugraph,[]) funl | Cic.CoFix (_, funl) -> let tys = List.map (fun (n,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) funl in List.fold_left ( fun (subst,metasenv,ugraph,acc) (_, ty, bo) -> let subst,metasenv,ugraph,resty = find subst metasenv ugraph context w ty in let subst,metasenv,ugraph,resbo = find subst metasenv ugraph (tys @ context) w bo in subst,metasenv,ugraph, resty @ resbo @ acc ) (subst,metasenv,ugraph,[]) funl in find subst metasenv ugraph context wanted t let select_in_term ~metasenv ~context ~ugraph ~term ~pattern:(wanted,where) = let add_ctx context name entry = (Some (name, entry)) :: context in let map2 error_msg f l1 l2 = try List.map2 f l1 l2 with | Invalid_argument _ -> raise (Bad_pattern (lazy error_msg)) in let rec aux context where term = match (where, term) with | Cic.Implicit (Some `Hole), t -> [context,t] | Cic.Implicit (Some `Type), t -> [] | Cic.Implicit None,_ -> [] | Cic.Meta (_, ctxt1), Cic.Meta (_, ctxt2) -> List.concat (map2 "wrong number of argument in explicit substitution" (fun t1 t2 -> (match (t1, t2) with Some t1, Some t2 -> aux context t1 t2 | _ -> [])) ctxt1 ctxt2) | Cic.Cast (te1, ty1), Cic.Cast (te2, ty2) -> aux context te1 te2 @ aux context ty1 ty2 | Cic.Prod (Cic.Anonymous, s1, t1), Cic.Prod (name, s2, t2) | Cic.Lambda (Cic.Anonymous, s1, t1), Cic.Lambda (name, s2, t2) -> aux context s1 s2 @ aux (add_ctx context name (Cic.Decl s2)) t1 t2 | Cic.Prod (Cic.Name n1, s1, t1), Cic.Prod ((Cic.Name n2) as name , s2, t2) | Cic.Lambda (Cic.Name n1, s1, t1), Cic.Lambda ((Cic.Name n2) as name, s2, t2) when n1 = n2-> aux context s1 s2 @ aux (add_ctx context name (Cic.Decl s2)) t1 t2 | Cic.Prod (name1, s1, t1), Cic.Prod (name2, s2, t2) | Cic.Lambda (name1, s1, t1), Cic.Lambda (name2, s2, t2) -> [] | Cic.LetIn (Cic.Anonymous, s1, t1), Cic.LetIn (name, s2, t2) -> aux context s1 s2 @ aux (add_ctx context name (Cic.Def (s2,None))) t1 t2 | Cic.LetIn (Cic.Name n1, s1, t1), Cic.LetIn ((Cic.Name n2) as name, s2, t2) when n1 = n2-> aux context s1 s2 @ aux (add_ctx context name (Cic.Def (s2,None))) t1 t2 | Cic.LetIn (name1, s1, t1), Cic.LetIn (name2, s2, t2) -> [] | Cic.Appl terms1, Cic.Appl terms2 -> auxs context terms1 terms2 | Cic.Var (_, subst1), Cic.Var (_, subst2) | Cic.Const (_, subst1), Cic.Const (_, subst2) | Cic.MutInd (_, _, subst1), Cic.MutInd (_, _, subst2) | Cic.MutConstruct (_, _, _, subst1), Cic.MutConstruct (_, _, _, subst2) -> auxs context (List.map snd subst1) (List.map snd subst2) | Cic.MutCase (_, _, out1, t1, pat1), Cic.MutCase (_ , _, out2, t2, pat2) -> aux context out1 out2 @ aux context t1 t2 @ auxs context pat1 pat2 | Cic.Fix (_, funs1), Cic.Fix (_, funs2) -> let tys = List.map (fun (n,_,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) funs2 in List.concat (map2 "wrong number of mutually recursive functions" (fun (_, _, ty1, bo1) (_, _, ty2, bo2) -> aux context ty1 ty2 @ aux (tys @ context) bo1 bo2) funs1 funs2) | Cic.CoFix (_, funs1), Cic.CoFix (_, funs2) -> let tys = List.map (fun (n,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) funs2 in List.concat (map2 "wrong number of mutually co-recursive functions" (fun (_, ty1, bo1) (_, ty2, bo2) -> aux context ty1 ty2 @ aux (tys @ context) bo1 bo2) funs1 funs2) | x,y -> raise (Bad_pattern (lazy (Printf.sprintf "Pattern %s versus term %s" (CicPp.ppterm x) (CicPp.ppterm y)))) and auxs context terms1 terms2 = (* as aux for list of terms *) List.concat (map2 "wrong number of arguments in application" (fun t1 t2 -> aux context t1 t2) terms1 terms2) in let context_len = List.length context in let roots = aux context where term in match wanted with None -> [],metasenv,ugraph,roots | Some wanted -> let rec find_in_roots = function [] -> [],metasenv,ugraph,[] | (context',where)::tl -> let subst,metasenv,ugraph,tl' = find_in_roots tl in let subst,metasenv,ugraph,found = let wanted, metasenv, ugraph = wanted context' metasenv ugraph in find_subterms ~subst ~metasenv ~ugraph ~wanted ~context:context' where in subst,metasenv,ugraph,found @ tl' in find_in_roots roots (** create a pattern from a term and a list of subterms. * the pattern is granted to have a ? for every subterm that has no selected * subterms * @param equality equality function used while walking the term. Defaults to * physical equality (==) *) let pattern_of ?(equality=(==)) ~term terms = let (===) x y = equality x y in let not_found = false, Cic.Implicit None in let rec aux t = match t with | t when List.exists (fun t' -> t === t') terms -> true,Cic.Implicit (Some `Hole) | Cic.Var (uri, subst) -> let b,subst = aux_subst subst in if b then true,Cic.Var (uri, subst) else not_found | Cic.Meta (i, ctxt) -> let b,ctxt = List.fold_right (fun e (b,ctxt) -> match e with None -> b,None::ctxt | Some t -> let bt,t = aux t in b||bt ,Some t::ctxt ) ctxt (false,[]) in if b then true,Cic.Meta (i, ctxt) else not_found | Cic.Cast (te, ty) -> let b1,te = aux te in let b2,ty = aux ty in if b1||b2 then true,Cic.Cast (te, ty) else not_found | Cic.Prod (name, s, t) -> let b1,s = aux s in let b2,t = aux t in if b1||b2 then true, Cic.Prod (name, s, t) else not_found | Cic.Lambda (name, s, t) -> let b1,s = aux s in let b2,t = aux t in if b1||b2 then true, Cic.Lambda (name, s, t) else not_found | Cic.LetIn (name, s, t) -> let b1,s = aux s in let b2,t = aux t in if b1||b2 then true, Cic.LetIn (name, s, t) else not_found | Cic.Appl terms -> let b,terms = List.fold_right (fun t (b,terms) -> let bt,t = aux t in b||bt,t::terms ) terms (false,[]) in if b then true,Cic.Appl terms else not_found | Cic.Const (uri, subst) -> let b,subst = aux_subst subst in if b then true, Cic.Const (uri, subst) else not_found | Cic.MutInd (uri, tyno, subst) -> let b,subst = aux_subst subst in if b then true, Cic.MutInd (uri, tyno, subst) else not_found | Cic.MutConstruct (uri, tyno, consno, subst) -> let b,subst = aux_subst subst in if b then true, Cic.MutConstruct (uri, tyno, consno, subst) else not_found | Cic.MutCase (uri, tyno, outty, t, pat) -> let b1,outty = aux outty in let b2,t = aux t in let b3,pat = List.fold_right (fun t (b,pat) -> let bt,t = aux t in bt||b,t::pat ) pat (false,[]) in if b1 || b2 || b3 then true, Cic.MutCase (uri, tyno, outty, t, pat) else not_found | Cic.Fix (funno, funs) -> let b,funs = List.fold_right (fun (name, i, ty, bo) (b,funs) -> let b1,ty = aux ty in let b2,bo = aux bo in b||b1||b2, (name, i, ty, bo)::funs) funs (false,[]) in if b then true, Cic.Fix (funno, funs) else not_found | Cic.CoFix (funno, funs) -> let b,funs = List.fold_right (fun (name, ty, bo) (b,funs) -> let b1,ty = aux ty in let b2,bo = aux bo in b||b1||b2, (name, ty, bo)::funs) funs (false,[]) in if b then true, Cic.CoFix (funno, funs) else not_found | Cic.Rel _ | Cic.Sort _ | Cic.Implicit _ -> not_found and aux_subst subst = List.fold_right (fun (uri, t) (b,subst) -> let b1,t = aux t in b||b1,(uri, t)::subst) subst (false,[]) in snd (aux term) exception Fail of string Lazy.t (** select metasenv conjecture pattern * select all subterms of [conjecture] matching [pattern]. * It returns the set of matched terms (that can be compared using physical * equality to the subterms of [conjecture]) together with their contexts. * The representation of the set mimics the ProofEngineTypes.pattern type: * a list of hypothesis (names of) together with the list of its matched * subterms (and their contexts) + the list of matched subterms of the * with their context conclusion. Note: in the result the list of hypothesis * has an entry for each entry in the context and in the same order. * Of course the list of terms (with their context) associated to the * hypothesis name may be empty. * * @raise Bad_pattern * *) let select ~metasenv ~ugraph ~conjecture:(_,context,ty) ~pattern:(what,hyp_patterns,goal_pattern) = let find_pattern_for name = try Some (snd (List.find (fun (n, pat) -> Cic.Name n = name) hyp_patterns)) with Not_found -> None in let subst,metasenv,ugraph,ty_terms = select_in_term ~metasenv ~context ~ugraph ~term:ty ~pattern:(what,goal_pattern) in let context_len = List.length context in let subst,metasenv,ugraph,context_terms = let subst,metasenv,ugraph,res,_ = (List.fold_right (fun entry (subst,metasenv,ugraph,res,context) -> match entry with None -> subst,metasenv,ugraph,(None::res),(None::context) | Some (name,Cic.Decl term) -> (match find_pattern_for name with | None -> subst,metasenv,ugraph,((Some (`Decl []))::res),(entry::context) | Some pat -> let subst,metasenv,ugraph,terms = select_in_term ~metasenv ~context ~ugraph ~term ~pattern:(what,pat) in subst,metasenv,ugraph,((Some (`Decl terms))::res), (entry::context)) | Some (name,Cic.Def (bo, ty)) -> (match find_pattern_for name with | None -> let selected_ty=match ty with None -> None | Some _ -> Some [] in subst,metasenv,ugraph,((Some (`Def ([],selected_ty)))::res), (entry::context) | Some pat -> let subst,metasenv,ugraph,terms_bo = select_in_term ~metasenv ~context ~ugraph ~term:bo ~pattern:(what,pat) in let subst,metasenv,ugraph,terms_ty = match ty with None -> subst,metasenv,ugraph,None | Some ty -> let subst,metasenv,ugraph,res = select_in_term ~metasenv ~context ~ugraph ~term:ty ~pattern:(what,pat) in subst,metasenv,ugraph,Some res in subst,metasenv,ugraph,((Some (`Def (terms_bo,terms_ty)))::res), (entry::context)) ) context (subst,metasenv,ugraph,[],[])) in subst,metasenv,ugraph,res in subst,metasenv,ugraph,context_terms, ty_terms (** locate_in_term equality what where context * [what] must match a subterm of [where] according to [equality] * It returns the matched terms together with their contexts in [where] * [equality] defaults to physical equality * [context] must be the context of [where] *) let locate_in_term ?(equality=(fun _ -> (==))) what ~where context = let add_ctx context name entry = (Some (name, entry)) :: context in let rec aux context where = if equality context what where then [context,where] else match where with | Cic.Implicit _ | Cic.Meta _ | Cic.Rel _ | Cic.Sort _ | Cic.Var _ | Cic.Const _ | Cic.MutInd _ | Cic.MutConstruct _ -> [] | Cic.Cast (te, ty) -> aux context te @ aux context ty | Cic.Prod (name, s, t) | Cic.Lambda (name, s, t) -> aux context s @ aux (add_ctx context name (Cic.Decl s)) t | Cic.LetIn (name, s, t) -> aux context s @ aux (add_ctx context name (Cic.Def (s,None))) t | Cic.Appl tl -> auxs context tl | Cic.MutCase (_, _, out, t, pat) -> aux context out @ aux context t @ auxs context pat | Cic.Fix (_, funs) -> let tys = List.map (fun (n,_,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) funs in List.concat (List.map (fun (_, _, ty, bo) -> aux context ty @ aux (tys @ context) bo) funs) | Cic.CoFix (_, funs) -> let tys = List.map (fun (n,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) funs in List.concat (List.map (fun (_, ty, bo) -> aux context ty @ aux (tys @ context) bo) funs) and auxs context tl = (* as aux for list of terms *) List.concat (List.map (fun t -> aux context t) tl) in aux context where (** locate_in_conjecture equality what where context * [what] must match a subterm of [where] according to [equality] * It returns the matched terms together with their contexts in [where] * [equality] defaults to physical equality * [context] must be the context of [where] *) let locate_in_conjecture ?(equality=fun _ -> (==)) what (_,context,ty) = let context,res = List.fold_right (fun entry (context,res) -> match entry with None -> entry::context, res | Some (_, Cic.Decl ty) -> let res = res @ locate_in_term what ~where:ty context in let context' = entry::context in context',res | Some (_, Cic.Def (bo,ty)) -> let res = res @ locate_in_term what ~where:bo context in let res = match ty with None -> res | Some ty -> res @ locate_in_term what ~where:ty context in let context' = entry::context in context',res ) context ([],[]) in res @ locate_in_term what ~where:ty context (* saturate_term newmeta metasenv context ty goal_arity *) (* Given a type [ty] (a backbone), it returns its suffix of length *) (* [goal_arity] head and a new metasenv in which there is new a META for each *) (* hypothesis, a list of arguments for the new applications and the index of *) (* the last new META introduced. The nth argument in the list of arguments is *) (* just the nth new META. *) let saturate_term newmeta metasenv context ty goal_arity = let module C = Cic in let module S = CicSubstitution in assert (goal_arity >= 0); let rec aux newmeta ty = match ty with C.Cast (he,_) -> aux newmeta he (* CSC: patch to generate ?1 : ?2 : Type in place of ?1 : Type to simulate ?1 :< Type (* If the expected type is a Type, then also Set is OK ==> * we accept any term of type Type *) (*CSC: BUG HERE: in this way it is possible for the term of * type Type to be different from a Sort!!! *) | C.Prod (name,(C.Sort (C.Type _) as s),t) -> (* TASSI: ask CSC if BUG HERE refers to the C.Cast or C.Propd case *) let irl = CicMkImplicit.identity_relocation_list_for_metavariable context in let newargument = C.Meta (newmeta+1,irl) in let (res,newmetasenv,arguments,lastmeta) = aux (newmeta + 2) (S.subst newargument t) in res, (newmeta,[],s)::(newmeta+1,context,C.Meta (newmeta,[]))::newmetasenv, newargument::arguments,lastmeta *) | C.Prod (name,s,t) -> let irl = CicMkImplicit.identity_relocation_list_for_metavariable context in let newargument = C.Meta (newmeta,irl) in let res,newmetasenv,arguments,lastmeta,prod_no = aux (newmeta + 1) (S.subst newargument t) in if prod_no + 1 = goal_arity then let head = CicReduction.normalize ~delta:false context ty in head,[],[],lastmeta,goal_arity + 1 else (** NORMALIZE RATIONALE * we normalize the target only NOW since we may be in this case: * A1 -> A2 -> T where T = (\lambda x.A3 -> P) k * and we want a mesasenv with ?1:A1 and ?2:A2 and not * ?1, ?2, ?3 (that is the one we whould get if we start from the * beta-normalized A1 -> A2 -> A3 -> P **) let s' = CicReduction.normalize ~delta:false context s in res,(newmeta,context,s')::newmetasenv,newargument::arguments, lastmeta,prod_no + 1 | t -> let head = CicReduction.normalize ~delta:false context t in match CicReduction.whd context head with C.Prod _ as head' -> aux newmeta head' | _ -> head,[],[],newmeta,0 in (* WARNING: here we are using the invariant that above the most *) (* recente new_meta() there are no used metas. *) let res,newmetasenv,arguments,lastmeta,_ = aux newmeta ty in res,metasenv @ newmetasenv,arguments,lastmeta let lookup_type metasenv context hyp = let rec aux p = function | Some (Cic.Name name, Cic.Decl t) :: _ when name = hyp -> p, t | Some (Cic.Name name, Cic.Def (_, Some t)) :: _ when name = hyp -> p, t | Some (Cic.Name name, Cic.Def (u, _)) :: tail when name = hyp -> p, fst (CicTypeChecker.type_of_aux' metasenv tail u CicUniv.empty_ugraph) | _ :: tail -> aux (succ p) tail | [] -> raise (ProofEngineTypes.Fail (lazy "lookup_type: not premise in the current goal")) in aux 1 context