(* Copyright (C) 2002, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://cs.unibo.it/helm/. *) let new_meta_of_proof ~proof:(_, metasenv, _, _) = CicMkImplicit.new_meta metasenv [] let subst_meta_in_proof proof meta term newmetasenv = let uri,metasenv,bo,ty = proof in (* empty context is ok for term since it wont be used by apply_subst *) (* hack: since we do not know the context and the type of term, we create a substitution with cc =[] and type = Implicit; they will be in any case dropped by apply_subst, but it would be better to rewrite the code. Cannot we just use apply_subst_metasenv, etc. ?? *) let subst_in = CicMetaSubst.apply_subst [meta,([], term,Cic.Implicit None)] in let metasenv' = newmetasenv @ (List.filter (function (m,_,_) -> m <> meta) metasenv) in let metasenv'' = List.map (function i,canonical_context,ty -> let canonical_context' = List.map (function Some (n,Cic.Decl s) -> Some (n,Cic.Decl (subst_in s)) | Some (n,Cic.Def (s,None)) -> Some (n,Cic.Def ((subst_in s),None)) | None -> None | Some (_,Cic.Def (_,Some _)) -> assert false ) canonical_context in i,canonical_context',(subst_in ty) ) metasenv' in let bo' = subst_in bo in (* Metavariables can appear also in the *statement* of the theorem * since the parser does not reject as statements terms with * metavariable therein *) let ty' = subst_in ty in let newproof = uri,metasenv'',bo',ty' in (newproof, metasenv'') (*CSC: commento vecchio *) (* refine_meta_with_brand_new_metasenv meta term subst_in newmetasenv *) (* This (heavy) function must be called when a tactic can instantiate old *) (* metavariables (i.e. existential variables). It substitues the metasenv *) (* of the proof with the result of removing [meta] from the domain of *) (* [newmetasenv]. Then it replaces Cic.Meta [meta] with [term] everywhere *) (* in the current proof. Finally it applies [apply_subst_replacing] to *) (* current proof. *) (*CSC: A questo punto perche' passare un bo' gia' istantiato, se tanto poi *) (*CSC: ci ripasso sopra apply_subst!!! *) (*CSC: Attenzione! Ora questa funzione applica anche [subst_in] a *) (*CSC: [newmetasenv]. *) let subst_meta_and_metasenv_in_proof proof meta subst_in newmetasenv = let (uri,_,bo,ty) = proof in let bo' = subst_in bo in (* Metavariables can appear also in the *statement* of the theorem * since the parser does not reject as statements terms with * metavariable therein *) let ty' = subst_in ty in let metasenv' = List.fold_right (fun metasenv_entry i -> match metasenv_entry with (m,canonical_context,ty) when m <> meta -> let canonical_context' = List.map (function None -> None | Some (i,Cic.Decl t) -> Some (i,Cic.Decl (subst_in t)) | Some (i,Cic.Def (t,None)) -> Some (i,Cic.Def ((subst_in t),None)) | Some (_,Cic.Def (_,Some _)) -> assert false ) canonical_context in (m,canonical_context',subst_in ty)::i | _ -> i ) newmetasenv [] in let newproof = uri,metasenv',bo',ty' in (newproof, metasenv') let compare_metasenvs ~oldmetasenv ~newmetasenv = List.map (function (i,_,_) -> i) (List.filter (function (i,_,_) -> not (List.exists (fun (j,_,_) -> i=j) oldmetasenv)) newmetasenv) ;; (** finds the _pointers_ to subterms that are alpha-equivalent to wanted in t *) let find_subterms ~eq ~wanted t = let rec find w t = if eq w t then [t] else match t with | Cic.Sort _ | Cic.Rel _ -> [] | Cic.Meta (_, ctx) -> List.fold_left ( fun acc e -> match e with | None -> acc | Some t -> find w t @ acc ) [] ctx | Cic.Lambda (_, t1, t2) | Cic.Prod (_, t1, t2) | Cic.LetIn (_, t1, t2) -> find w t1 @ find (CicSubstitution.lift 1 w) t2 | Cic.Appl l -> List.fold_left (fun acc t -> find w t @ acc) [] l | Cic.Cast (t, ty) -> find w t @ find w ty | Cic.Implicit _ -> assert false | Cic.Const (_, esubst) | Cic.Var (_, esubst) | Cic.MutInd (_, _, esubst) | Cic.MutConstruct (_, _, _, esubst) -> List.fold_left (fun acc (_, t) -> find w t @ acc) [] esubst | Cic.MutCase (_, _, outty, indterm, patterns) -> find w outty @ find w indterm @ List.fold_left (fun acc p -> find w p @ acc) [] patterns | Cic.Fix (_, funl) -> List.fold_left ( fun acc (_, _, ty, bo) -> find w ty @ find w bo @ acc ) [] funl | Cic.CoFix (_, funl) -> List.fold_left ( fun acc (_, ty, bo) -> find w ty @ find w bo @ acc ) [] funl in find wanted t