
Brokers and Web-Services for Automatic

Deduction: a Case Study

Claudio Sacerdoti Coen? and Stefano Zacchiroli??

1 Department of Computer Science
University of Bologna

Mura Anteo Zamboni 7, 40127 Bologna, ITALY
sacerdot@cs.unibo.it

2 Department of Computer Science
École Normale Supérieure

45, Rue d’Ulm, F-75230 Paris Cedex 05, FRANCE
zack@cs.unibo.it

Abstract. We present a planning broker and several Web-Services for
automatic deduction. Each Web-Service implements one of the tactics
usually available in interactive proof-assistants. When the broker is sub-
mitted a “proof status” (an incomplete proof tree and a focus on an open
goal) it dispatches the proof to the Web-Services, collects the successful
results, and send them back to the client as “hints” as soon as they are
available.

In our experience this architecture turns out to be helpful both for expe-
rienced users (who can take benefit of distributing heavy computations)
and beginners (who can learn from it).

1 Introduction

The Web-Service approach at software development seems to be a working so-
lution for getting rid of a wide range of incompatibilities between communicat-
ing software applications. W3C’s efforts in standardizing related technologies
grant longevity and implementations availability for frameworks based on Web-
Services for information exchange. As a direct consequence, the number of such
frameworks is increasing and the World Wide Web is moving from a disorga-
nized repository of human-understandable HTML documents to a disorganized
repository of applications working on machine-understandable XML documents
both for input and output.

The big challenge for the next future is to provide stable and reliable services
over this disorganized, unreliable, and ever-evolving architecture. The standard
solution is to provide a further level of stable services (called brokers) that behave

? Partially supported by ‘MoWGLI: Math on the Web, Get it by Logic and Interfaces’,
EU IST-2001-33562

?? Partially supported by ‘MyThS: Models and Types for Security in Mobile Distributed
Systems’, EU FET-GC IST-2001-32617



2 Claudio Sacerdoti Coen and Stefano Zacchiroli

as common gateways/addresses for client applications to access a wide variety
of services and abstract over them.

Since the Declaration of Linz, the MONET Consortium1 is working on the de-
velopment of a framework, based on the Web-Services/brokers approach, aimed
at providing a set of software tools for the advertisement and the discovery of
mathematical Web-Services.

Several groups have already developed software bus and services2 providing
both computational and reasoning capabilities [3, 4, 15, 16]: the first ones are
implemented on top of Computer Algebra Systems; the second ones provide
interfaces to well-known theorem provers. Proof-planners, proof-assistants, CASs
and domain-specific problem solvers are natural candidates to be clients of these
services. Nevertheless, so far the number of examples in the literature has been
insufficient to fully assess the concrete benefits of the framework.

In this paper we present an architecture, namely H-Bugs, implementing a
suggestion engine for the proof assistant developed on behalf of the HELM3

project [5]. We provide several Web-Services (called tutors) able to suggest pos-
sible ways to proceed in a proof. The tutors are orchestrated by a broker (a
Web-Service itself) that is able to dispatch a proof status from a client (the
proof-assistant) to the tutors; each tutor tries to make progress in the proof
and, in case of success, notifies the client that shows an hint to the user. The
broker is an instance of the homonymous entity of the MONET framework. The
tutors are MONET services. Another Web-Service (which is not described in
this paper and which is called Getter [14]) is used to locate and download math-
ematical entities; the Getter plays the role of the Mathematical Object Manager
of the MONET framework.

A precursor of H-Bugs is the Ωmega-Ants project [6, 7], which provided sim-
ilar functionalities to the Ωmega proof-planner [8]. The main architectural dif-
ference between H-Bugs and Ωmega-Ants is that the latter is based on a black-
board architecture and it is not implemented using Web-Services and brokers.

In Sect. 2 we present the architecture of H-Bugs. A usage session is shown
in Sect. 3. Further implementation details are given in Sect. 4. Sect. 5 is an
overview of the tutors that have been implemented. As usual, the final section
of this paper is devoted to conclusions and future works.

2 An H-Bugs Bird’s Eye View

The H-Bugs architecture (depicted in Fig. 1) is based on three different kinds of
actors: clients, brokers, and tutors. Each actor presents one or more Web-Service
interfaces to its neighbors H-Bugs actors.

1 http://monet.nag.co.uk/cocoon/monet/index.html
2 The most part of these systems predate the development of Web-Services. Those

systems whose development is still active are slowly being reimplemented as Web-
Services.

3 Hypertextual Electronic Library of Mathematics, http://helm.cs.unibo.it



Brokers and Web-Services for Automatic Deduction: a Case Study 3

Fig. 1. H-Bugs architecture

In this section we detail the role and requirements of each kind of actors and
we discuss about the correspondences between them and the MONET entities
described in [11]. Due to lack of space, we cannot compare our framework to
similar proposals, as the older and more advanced Ωmega system. The study
of the correspondences with MONET is well motivated by the fact that the
MONET framework is still under development and that our implementation
is one of the first experiments in Web-Servicebased distributed reasoning. On
the other hand, a comparison with Ωmega would be less interesting since the
functionalities we provide so far are just a subset of the Ωmega-Ants ones.

Clients An H-Bugs client is a software component able to produce proof status
and to consume hints.

A proof status is a representation of an incomplete proof and is supposed to
be informative enough to be used by an interactive proof assistant. No additional
requirements exist on the proof status, but there should be an agreement on its
format between clients and tutors. A hint is an encoding of a step that can be
performed in order to proceed in an incomplete proof. Usually it represents a
reference to a tactic available on some proof assistant along with an instantiation
for its formal parameters. Hints can also be more structured: a hint can be as
complex as a whole proof-plan.

Using W3C’s terminology [1], clients act both as Web-Service providers and
requesters, see Fig. 2. They act as providers receiving hints from the broker;
they act as requesters submitting new status to the tutors. Clients additionally
use broker services to know which tutors are available and to subscribe to one
or more of them.

Usually, when the client role is taken by an interactive proof assistant, new
status are sent to the broker as soon as the proof change (e.g. when the user
applies a tactic or when a new proof is started); hints are shown to the user
by the means of some effects in the user interface (e.g. popping a dialog box or
enlightening a tactic button).

H-Bugs clients act as MONET clients and ask brokers to provide access to
a set of services (the tutors). H-Bugs has no actors corresponding to MONET’s



4 Claudio Sacerdoti Coen and Stefano Zacchiroli

Fig. 2. H-Bugs Web-Services interfaces

Broker Locating Service (since the client is supposed to know the URI of at
least one broker). The H-Bugs clients and tutors contact the Getter (a MONET
Mathematical Object Manager) to locate and retrieve mathematical items from
the HELM library. The proof status that are exchanged by the H-Bugs actors,
instead, are built on the fly and are neither stored nor given an unique identifier
(URI) to be managed by the Getter.

Brokers Brokers are the key actors of the H-Bugs architecture since they act
as intermediaries between clients and tutors. They behave as Web-Services
providers and requesters for both clients and tutors, see Fig. 2.

With respect to the client, a broker acts as a Web-Service provider, receiving
the proof status and forwarding it to one or more tutors. It also acts as a Web-
Service requester sending hints to the client as soon as they are available from
the tutors.

With respect to the tutors, the Web-Service provider role is accomplished by
receiving hints as soon as they are produced; as a requester, it is accomplished
by asking for computations (musings in H-Bugs terminology) on status received
by clients and by stopping already late but still ongoing musings.

Additionally brokers keep track of available tutors and clients subscriptions.

H-Bugs brokers act as MONET brokers implementing the following com-
ponents: Client Manager, Service Registry Manager (keeping track of available
tutors), Planning Manager (choosing the available tutors among the ones to
which the client is subscribed), Execution Manager. The Service Manager com-
ponent is not required since the session handler, that identifies a session between
a service and a broker, is provided to the service by the broker instead of being
received from the service when the session is initialized. In particular, a session is
identified by an unique identifier for the client (its URL) and an unique identifier
for the broker (its URL).

Notice that H-Bugs brokers have no knowledge of the domain area of proof-
assistants, nor they are able to interpret the messages that they are forwarding.



Brokers and Web-Services for Automatic Deduction: a Case Study 5

They are indeed only in charge of maintaining the abstraction of several rea-
soning blackboards — one for each client — of capacity one: a blackboard is
created when the client submits a problem; it is then “shared” by the client and
all the tutors until the client submits the next problem. For instance, replacing
the client with a CAS and all the tutors with agents implementing different res-
olution methods for differential equations would not require any change in the
broker. Notice that all the tutors must expose the same interface to the broker.

The MONET architecture specification does not state explicitly whether the
service and broker answers can be asynchronous. Nevertheless, the described
information flow implicitly suggests a synchronous implementation. On the con-
trary, in H-Bugs every request is asynchronous: the connection used by an actor
to issue a query is immediately closed; when a service produces an answer, it
gives it back to the issuer by calling the appropriate actor’s method.

Tutors Tutors are software components able to consume proof status producing
hints. H-Bugs does not specify by which means hints should be produced: tutors
can use any means necessary (heuristics, external theorem prover or CAS, etc.).
The only requirement is that there exists an agreement on the formats of proof
status and hints.

Tutors act both as Web-Service providers and requesters for the broker, see
Fig. 2. As providers, they wait for commands requesting to start a new musing

on a given proof status or to stop an old, out of date, musing. As requesters,
they signal to the broker the end of a musing along with its outcome (a hint in
case of success or a failure notification).

H-Bugs tutors act as MONET services.

3 An H-Bugs Session Example

In this section we describe a typical H-Bugs session. The aim of the session is to
solve the following easy exercise:

Exercise 1. Let x be a generic real number. Using the HELM proof-engine, prove
that

x =
(x + 1) ∗ (x + 1) − 1 − x ∗ x

2

Let us suppose that the H-Bugs broker is already running and that the tutors
already registered themselves to the broker. When the user starts our proof-
engine gTopLevel, the system registers itself to the broker, that sends back
the list of available tutors. By default, gTopLevel notifies to the broker its
intention of subscribing to every tutor available. The user can always open a
configuration window where she is presented the list of available tutors and she
can independently subscribe and unsubscribe herself to each tutor.

The user can now insert into the system the statement of the theorem and
start proving it. Let us suppose that the first step of the user is proving that
the denominator 2 is different from 0. Once that this technical result is proven,



6 Claudio Sacerdoti Coen and Stefano Zacchiroli

Fig. 3. Example session.

the user must prove the goal shown in the upper right corner of the window in
background in Fig. 3.

While the user is wondering how to proceed in the proof, the tutors are trying
to progress in the proof. After a while, the tutors’ suggestions start to appear
in the lower part of the H-Bugs interface window (the topmost window in Fig.
3). In this case, the tutors are able to produce 23 hints. The first and not very
useful hint suggests to proceed in the proof by exchanging the two sides of the
equality. The second hint suggests to reduce both sides of the equality to their
normal form by using only reductions which are justified by the ring structure of
the real numbers; the two normal forms, though, are so different that the proof
is not really simplified. All the residual 21 hints suggest to apply one lemma
from the distributed library of HELM. The user can look at the statement of
any lemma by clicking on its URI.

The user can now look at the list of suggestions and realize that a good
one is applying the lemma r Rmult mult that allows to multiply both equality
members by the same scalar4. Double-clicking on the hint automatically applies
the lemma, reducing the proof to closing three new goals. The first one asks the
user the scalar to use as an argument of the previous lemma; the second one

4 Even if she does not receive the hint, the user probably already knows that this is
the right way to proceed. The difficult part, accomplished by the hint, is guessing
what is the name of the lemma to apply.



Brokers and Web-Services for Automatic Deduction: a Case Study 7

states that the scalar is different from 0; the third lemma (the main one) asks
to prove the equality between the two new members.

The user proceeds by instantiating the scalar with the number 2. The
Assumption tutor now suggests to close the second goal (that states that 2 6= 0)
by applying the hypothesis H . No useful suggestions, instead, are generated for
the main goal 2∗x = 2∗((x+1)∗(x+1)−1−x∗x)∗2−1. To proceed in the proof
the user needs to simplify the expression using the lemma Rinv r simpl m that
states that ∀x, y. y = x∗y∗x−1. Since we do not provide yet any tutor suggesting
simplifications, the user must find out this simplification by himself. Once she
founds it, the goal is reduced to proving that 2 ∗x = (x + 1) ∗ (x + 1)− 1−x ∗x.
This equality is easily solved by the Ring tutor, that suggests5 to the user how
to complete the proof in one macrostep.

4 Implementation’s Highlights

In this section we present some of the most relevant implementation details of
the H-Bugs architecture.

Proof status In our implementation of the H-Bugs architecture we used the proof
assistant of the HELM project (codename gTopLevel) as an H-Bugs client. Thus
we have implemented serialization/deserialization capabilities for its internal sta-
tus. In order to be able to describe Web-Services that exchange status in WSDL
using the XML Schema type system, we have chosen an XML format as the
target format for the serialization.

Each proof is represented by a tuple of four elements: uri, metasenv, proof,
thesis.

uri : an URI chosen by the user at the beginning of the proof process. Once
(and if) proved, that URI will globally identify the term inside the HELM
library (given that the user decides to save it).

thesis : the ongoing proof thesis
proof : the current incomplete proof tree. It can contain metavariables (holes)

that stands for the parts of the proof that are still to be completed. Each
metavariable appearing in the tree references one element of the metavari-
ables environment (metasenv).

metasenv : the metavariables environment is a list of goals (unproved con-
jectures). In order to complete the proof, the user has to instantiate every
metavariable in the proof with a proof of the corresponding goal. Each goal is
identified by an unique identifier and has a context and a type (the goal the-
sis). The context is a list of named hypotheses (declarations and definitions).
Thus the context and the goal thesis form a sequent, which is the statement
of the proof that will be used to instantiate the metavariable occurrences.

5 The Ring suggestion is just one of the 22 hints that the user receives. It is the only
hint that does not open new goals, but the user right now does not have any way to
know that.



8 Claudio Sacerdoti Coen and Stefano Zacchiroli

Each of these information is represented in XML as described in [12]. Addi-
tionally, an H-Bugs status carries the unique identifier of the current goal, which
is the goal the user is currently focused on. Using this value it is possible to
implement different client side strategies: the user could ask the tutors to work
on the goal she is considering or to work on the other “background” goals.

Hints A hint in the H-Bugs architecture should carry enough information to
permit the client to progress in the current proof. In our implementation each
hint corresponds to either one of the tactics available to the user in gTopLevel
(together with its actual arguments) or a set of alternative suggestions (a list of
hints).

For tactics that do not require any particular argument (like tactics that ap-
ply type constructors or decision procedures) only the tactic name is represented
in the hint. For tactics that need terms as arguments (for example the Apply

tactic that apply a given lemma) the hint includes a textual representation of
them, using the same representation used by the interactive proof assistant when
querying user for terms. In order to be transmitted between Web-Services, hints
are serialized in XML.

It is also possible for a tutor to return more hints at once, grouping them
in a particular XML element. This feature turns out to be particularly useful
for the searchPatternApply tutor (see Sect. 5) that queries a lemma database
and returns to the client a list of all lemmas that could be used to complete
the proof. This particular hint is encoded as a list of Apply hints, each of them
having one of the results as term argument.

We would like to stress that the H-Bugs architecture has no dependency on
either the hint or the status representation: the only message parts that are
fixed are those representing the administrative messages (the envelopes in the
Web-Services terminology). In particular, the broker can manage at the same
time several sessions working on different status/hints formats. Of course, there
must be an agreement between the clients and the tutors on the format of the
data exchanged.

In our implementation the client does not trust the tutors hints: being en-
coded as references to available tactics imply that an H-Bugs client, at the receipt
of a hint, simply try to replay the work done by a tutor on the local copy of
the proof. The application of the hint can even fail to type check and the client
copy of the proof can be left undamaged after spotting the error. Note, however,
that it is still possible to implement a complex tutor that looks for a proof do-
ing backtracking and that send back to the client a hint whose argument is a
witness (a trace) of the proof found: the client applies the hint reconstructing
(and checking the correctness of) the proof from the witness, without having to
re-discover the proof itself.

An alternative implementation where the tutors are trusted would simply
send back to the client a new proof-status. Upon receiving the proof-status,
the client would just override its current proof status with the suggested one.
In the case of those clients which are implemented using proof-objects (as the
Coq proof-assistant, for instance), it is still possible for the client to type-check



Brokers and Web-Services for Automatic Deduction: a Case Study 9

the proof-object and reject wrong hints. The systems that are not based on
proof-objects (as PVS, NuPRL, etc.), instead, must completely trust the new
proof-status. In this case the H-Bugs architecture would need at least to be
extended with clients-tutors authentication.

Registries Being central in the H-Bugs architecture, the broker is also respon-
sible of housekeeping operations both for clients and tutors. These operations
are implemented using three different data structures called registries : clients
registry, tutors registry and musings registry.

In order to use the suggestion engine a client should register itself to the
broker and subscribe to one or more tutors. The registration phase is triggered
by the client using the Register client method of the broker to send him an
unique identifier and its base URI as a Web-Service. After the registration, the
client can use the List tutors method of the broker to get a list of available
tutors. Eventually the client can subscribe to one or more of these using the
Subscribe method of the broker. Clients can also unregister from brokers using
Unregister client method.

The broker keeps track of both registered clients and clients’ subscriptions
in the clients registry.

In order to be advertised to clients during the subscription phase, tutors
should register to the broker using the Register tutor method of the broker.
This method is really similar to Register client: tutors are required to send
an unique identifier and a base URI for their Web-Service. Additionally tu-
tors are required to send an human readable description of their capabilities;
this information could be used by the client user to decide which tutors she
wants to subscribe to. As the clients, tutors can unregister from brokers using
Unregister broker method.

Each time the client status changes, it get sent sent to the broker using its
Status method. Using both the clients registry (to lookup the client’s subscrip-
tion) and the tutors registry (to check if some tutors have unsubscribed), the
broker is able to decide to which tutors the new status have to be forwarded.

The forwarding operation is performed using the Start musing method of
the tutors, that is a request to start a new computation (musing ) on a given
status. The return value of Start musing is a musing identifier that is saved
in the musings registry along with the identifier of the client that triggered the
musing.

As soon as a tutor completes an musing, it informs the broker using its
Musing completed method; the broker can now remove the musing entry from
the musings registry and, depending on its outcome, inform the client. In case of
success one of the Musing completed arguments is a hint to be sent to the client;
otherwise there is no need to inform him and the Musing completed method is
called just to update the musings registry.

Consulting the musings registry, the broker is able to know, at each time,
which musings are in execution on which tutor. This peculiarity is exploited by
the broker on invocation of the Status method. Receiving a new status from the
client implies indeed that the previous status no longer exists and all musings



10 Claudio Sacerdoti Coen and Stefano Zacchiroli

working on it should be stopped: additionally to the already described behavior
(i.e. starting new musings on the received status), the broker takes also care of
stopping ongoing computation invoking the Stop musing method of the tutors.

Tutors Each tutor exposes a Web-Service interface and should be able to work,
not only for many different clients referring to a common broker, but also for
many different brokers. The potential high number of concurrent clients imposes
a multi-threaded or multi-process architecture.

Our current implementation is based on a multi threaded architecture ex-
ploiting the capabilities of the O’HTTP library [14]. Each tutor is composed
by one always running thread plus an additional thread for each musing. One
thread is devoted to listening for incoming Web-Service requests; when a request
is received the control is passed to a second thread, created on the fly, that han-
dle the incoming request (usual one-thread-per-request approach in web servers
design). In particular if the received request is Start musing, a new thread is
spawned to handle it; the thread in duty to handle the HTTP request returns
an HTTP response containing the identifier of the just started musing, and then
dies. If the received request is Stop musing, instead, the spawned thread kills
the thread responsible for the musing whose identifier is the argument of the
Stop musing method.

This architecture turns out to be scalable and allows the running threads to
share the cache of loaded (and type-checked) theorems. As we will explain in
Sect. 5, this feature turns out to be really useful for tactics that rely on a huge
but fixed set of lemmas, as every reflexive tactic.

The implementation of a tutor within the described architecture is not that
difficult having a language with good threading capabilities (as OCaml has)
and a pool of already implemented tactics (as gTopLevel has). Working with
threads is known to be really error prone due to concurrent programming in-
trinsic complexity. Moreover, there is a non-neglectable part of code that needs
to be duplicated in every tutor: the code to register the tutor to the broker and
to handle HTTP requests; the code to manage the creation and termination
of threads; and the code for parsing the requests and serializing the answers.
As a consequence we have written a generic implementation of a tutor which
is parameterized over the code that actually proposes the hint and over some
administrative data (as the port the tutor will be listening to).

The generic tutor skeleton is really helpful in writing new tutors. Neverthe-
less, the code obtained by converting existing tactics into tutors is still quite
repetitive: every tutor that wraps a tactic has to instantiate its own copy of the
proof-engine kernel and, for each request, it has to override its status, guess the
tactic arguments, apply the tactic and, in case of success, send back a hint with
the tactic name and the chosen arguments. Of course, the complex part of the
work is guessing the right arguments. For the simple case of tactics that do not
require any argument, though, we are able to automatically generate the whole
tutor code given the tactic name. Concretely, we have written a tactic-based
tutor template and a script that parses an XML file with the specification of
the tutor and generates the tutor’s code. The XML file describes the tutor’s



Brokers and Web-Services for Automatic Deduction: a Case Study 11

port, the code to invoke the tactic, the hint that is sent back upon successful
application and a human readable explanation of the tactic implemented by the
tutor.

5 The Implemented H-BugsTutors

To test the H-Bugs architecture and to assess the utility of a suggestion engine
for the end user, we have implemented several tutors. In particular, we have
investigated three classes of tutors:

1. Tutors for beginners. These are tutors that implement tactics which are
neither computationally expensive nor difficult to understand: an expert user
can always understand if the tactic can be applied or not without having to
try it. For example, the following implemented tutors belong to this class:
– Assumption Tutor : it ends the proof if the thesis is equivalent6 to one of

the hypotheses7.
– Contradiction Tutor : it ends the proof by reductio ad adsurdum if one

hypothesis is equivalent to False.
– Symmetry Tutor : if the goal thesis is an equality, it suggests to apply

the commutative property.
– Left/Right/Exists/Split/Reflexivity/Constructor Tutors : the Construc-

tor Tutor suggests to proceed in the proof by applying one or more
constructors when the goal thesis is an inductive type or a proposition
inductively defined according to the declarative style8. Since disjunction,
conjunction, existential quantification and Leibniz equality are particu-
lar cases of inductive propositions, all the other tutors of this class are
instantiations of the the Constructor tactic. Left and Right suggest to
prove a disjunction by proving its left/right member; Split reduces the
proof of a conjunction to the two proof of its members; Exists suggests to
prove an existential quantification by providing a witness9; Reflexivity
proves an equality whenever the two sides are convertible.

6 In our implementation, the equivalence relation imposed by the logical framework is
convertibility. Two expressions are convertible when they reduce to the same normal
form. Two “equal” terms depending on free variables can be non-convertible since
free variables stop the reduction. For example, 2x is convertible with (3−1)x because
they both reduce to the same normal form x+ x+ 0; but 2x is not convertible to x2
since the latter is already in normal form.

7 In some cases, especially when non-trivial computations are involved, the user is
totally unable to figure out the convertibility of two terms. In these cases the tutor
becomes handy also for expert users.

8 An example of a proposition that can be given in declarative style is the ≤ relation
over natural numbers: ≤ is the smallest relation such that n ≤ n for every n and
n ≤ m for every n, m such that n ≤ p where p is the predecessor of m. Thus, a proof
of n ≤ n is simply the application of the first constructor to n and a proof of n ≤ m

is the application of the second constructor to n, m and a proof of n ≤ m.
9 This task is left to the user.



12 Claudio Sacerdoti Coen and Stefano Zacchiroli

Beginners, when first faced with a tactic-based proof-assistant, get lost quite
soon since the set of tactics is large and their names and semantics must be
remembered by heart. Tutorials are provided to guide the user step-by-step
in a few proofs, suggesting the tactics that must be used. We believe that
our beginners tutors can provide an auxiliary learning tool: after the tutorial,
the user is not suddenly left alone with the system, but she can experiment
with variations of the exercises given in the tutorial as much as she like,
still getting useful suggestions. Thus the user is allowed to focus on learning
how to do a formal proof instead of wasting efforts trying to remember the
interface to the system.

2. Tutors for Computationally Expensive Tactics. Several tactics have an un-
predictable behavior, in the sense that it is unfeasible to understand whether
they will succeed or they will fail when applied and what will be their result.
Among them, there are several tactics either computationally expensive or
resource consuming. In the first case, the user is not willing to try a tactic
and wait for a long time just to understand its outcome: she would prefer
to keep on concentrating on the proof and have the tactic applied in back-
ground and receive out-of-band notification of its success. The second case is
similar, but the tactic application must be performed on a remote machine to
avoid overloading the user host with several concurrent resource consuming
applications.
Finally, several complex tactics and in particular all the tactics based on
reflexive techniques depend on a pretty large set of definitions, lemmas and
theorems. When these tactics are applied, the system needs to retrieve and
load all the lemmas. Pre-loading all the material needed by every tactic can
quickly lead to long initialization times and to large memory footstamps. A
specialized tutor running on a remote machine, instead, can easily pre-load
the required theorems.
As an example of computationally expensive task, we have implemented a
tutor for the Ring tactic [9]. The tutor is able to prove an equality over a
ring by reducing both members to a common normal form. The reduction,
which may require some time in complex cases, is based on the usual com-
mutative, associative and neutral element properties of a ring. The tactic
is implemented using a reflexive technique, which means that the reduction
trace is not stored in the proof-object itself: the type-checker is able to per-
form the reduction on-the-fly thanks to the conversion rules of the system.
As a consequence, in the library there must be stored both the algorithm
used for the reduction and the proof of correctness of the algorithm, based
on the ring axioms. This big proof and all of its lemmas must be retrieved
and loaded in order to apply the tactic. The Ring tutor loads and caches all
the required theorems the first time it is contacted.

3. Intelligent Tutors. Expert users can already benefit from the previous class
of tutors. Nevertheless, to achieve a significative production gain, they need
more intelligent tutors implementing domain-specific theorem provers or able
to perform complex computations. These tutors are not just plain implemen-
tations of tactics or decision procedures, but can be more complex software



Brokers and Web-Services for Automatic Deduction: a Case Study 13

agents interacting with third-parties software, such as proof-planners, CAS
or theorem-provers.
To test the productivity impact of intelligent tutors, we have implemented
a tutor that is interfaced with the HELM Search-Engine10 and that is able
to look for every theorem in the distributed library that can be applied
to proceed in the proof. Even if the tutor deductive power is extremely
limited11, it is not unusual for the tutor to come up with precious hints
that can save several minutes of work that would be spent in proving again
already proven results or figuring out where the lemmas could have been
stored in the library.

6 Conclusions and Future Work

In this paper we described a suggestion engine architecture for proof-assistants:
the client (a proof-assistant) sends the current proof status to several distributed
Web-Services (called tutors) that try to progress in the proof and, in case of
success, send back an appropriate hint (a proof-plan) to the user. The user,
that in the meantime was able to reason and progress in the proof, is notified
with the hints and can decide to apply or ignore them. A broker is provided to
decouple the clients and the tutors and to allow the client to locate and invoke the
available remote services. The whole architecture is an instance of the MONET
architecture for Mathematical Web-Services. It constitutes a reimplementation of
the core features of the pioneering Ωmega-Ants system in the new Web-Services
framework.

A running prototype has been implemented as part of the HELM project [5]
and we already provide several tutors. Some of them are simple tutors that try to
apply one or more tactics of the HELM Proof-Engine, which is also our client.
We also have a much more complex tutor that is interfaced with the HELM
Search-Engine and looks for lemmas that can be directly applied.

Future works comprise the implementation of new features and tutors, and
the embedding of the system in larger test cases. For instance, one interesting
case study would be interfacing a CAS as Maple to the H-Bugs broker, developing
at the same time a tutor that implements the Field tactic of Coq, which proves
the equality of two expressions in an abstract field by reducing both members to
the same normal form. CASs can produce several compact normal forms, which
are particularly informative to the user and that may suggest how to proceed in a
proof. Unfortunately, CASs do not provide any certificate about the correctness
of the simplification. On the contrary, the Field tactic certifies the equality of
two expressions, but produces normal forms that are hardly a simplification of
the original formula. The benefits for the CAS would be obtained by using the
Field tutor to certify the CAS simplifications, proving that the Field normal
form of an expression is preserved by the simplification. More advanced tutors

10 http://helm.cs.unibo.it/library.html
11 We do not attempt to check if the new goals obtained applying a lemma can be

automatically proved or, even better, automatically disproved to reject the lemma.



14 Claudio Sacerdoti Coen and Stefano Zacchiroli

could exploit the CAS to reduce the goal to compact normal forms [10], making
the Field tutor certify the simplification according to the skeptical approach.

We have many plans for further developing both the H-Bugs architecture and
our prototype. Interesting results could be obtained augmenting the informative
content of each suggestion. We can for example modify the broker so that also
negative results are sent back to the client. Those negative suggestions could be
reflected in the user interface by deactivating commands to narrow the choice
of tactics available to the user. This approach could be interesting especially for
novice users, but requires the client to increase their level of trust in the other
actors.

We plan also to add some rating mechanism to the architecture. A first
improvement in this direction could be distinguishing between hints that, when
applied, are able to completely close one or more goals, and tactics that progress
in the proof by reducing one or more goals to new goals: since the new goals can
be false, the user can be forced later on to backtrack.

Other heuristics and or measures could be added to rate hints and show them
to the user in a particular order: an interesting one could be a measure that try
to minimize the size of the generated proof, privileging therefore non-overkilling
solutions [13].

We are also considering to follow the Ωmega-Ants path adding “recursion”
to the system so that the proof status resulting from the application of old
hints are cached somewhere and could be used as a starting point for new hint
searches. The approach is interesting, but it represents a big shift towards auto-
matic theorem proving: thus we must consider if it is worth the effort given the
increasing availability of automation in proof assistants tactics and the ongo-
ing development of Web-Services based on already existent and well developed
theorem provers.

Even if not strictly part of the H-Bugs architecture, the graphical user in-
terface (GUI) of our prototype needs a lot of improvement if we want it to be
really usable by novices. In particular, a critical issue is avoiding continuous dis-
tractions for the user determined by the hints that are asynchronously pushed
to her.

Our Web-Services still lack a real integration in the MONET architecture,
since we do not provide the different ontologies to describe our problems, solu-
tions, queries, and services. In the short term, completing this task could provide
a significative feedback to the MONET consortium and would enlarge the cur-
rent set of available MONET actors on the Web. In the long term, new more
intelligent tutors could be developed on top of already existent MONET Web-
Services.

To conclude, H-Bugs is a nice experiment meant to understand whether the
current Web-Services technology is mature enough to have a concrete and useful
impact on the daily work of proof-assistants users. So far, only the tutor that
is interfaced with the HELM Search-Engine has effectively increased the pro-
ductivity of experts users. The usefulness of the tutors developed for beginners,
instead, need further assessment.



Brokers and Web-Services for Automatic Deduction: a Case Study 15

References

1. Web Services Glossary, W3C Working Draft, 14 May 2003.
http://www.w3.org/TR/2003/WD-ws-gloss-20030514/

2. Web Services Description Language (WSDL) Version 1.2: Bindings, W3C Working
Draft, 24 January 2003.
http://www.w3.org/TR/wsdl12-bindings/

3. A. Armando, D. Zini. Interfacing Computer Algebra and Deduction Systems via
the Logic Broker Architecture. In Proceedings of the Eighth Calculemus sympho-
sium, St. Andrews, Scotland, 6–7 August 2000.

4. O. Caprotti. Symbolic Evaluator Service. Project Report of the MathBrocker
Project, RISC-Linz, Johannes Kepler University, Linz, Austria, May 2002.

5. A. Asperti, F. Guidi, L. Padovani, C. Sacerdoti Coen, I. Schena. Mathematical
Knowledge Management in HELM. In Annals of Mathematics and Artificial Intel-
ligence, 38(1): 27–46, May 2003.

6. C. Benzmüller, V. Sorge. O-Ants – An Open Approach at Combining Interactive
and Automated Theorem Proving. In M. Kerber and M. Kohlhase (eds.), Integra-
tion of Symbolic and Mechanized Reasoning, pp. 81–97, 2000.

7. C. Benzmüller, M. Jamnik, M. Kerber, V. Sorge. Agent-based Mathematical Rea-
soning. In A. Armando and T. Jebelean (eds.), Electronic Notes in Theoretical
Computer Science, (1999) 23(3), Elsevier.

8. C. Benzmüller, L. Cheikhrouhou, D. Fehrer, A. Fiedler, X. Huang, M. Kerber,
M. Kohlhase, K. Konrad, E. Melis, A. Meier, W. Schaarschmidt, J. Siekmann, V.
Sorge. OMEGA: Towards a Mathematical Assistant. In W. McCune (ed), Proceed-
ings of the 14th Conference on Automated Deduction (CADE-14), Springer LNAI
vol. 1249, pp. 252–255, Townsville, Australia, 1997.

9. S. Boutin. Using reflection to build efficient and certified decision procedures. In
Martin Abadi and Takahashi Ito, editors, TACS’97, volume 1281. LNCS, Springer-
Verlag, 1997.

10. David Delahaye, Micaela Mayero. A Maple Mode for Coq. Contribution to the Coq
library.
htpp://coq.inria.fr/contribs/MapleMode.html

11. The MONET Consortium, MONET Architecture Overview, Public Deliverable
D04 of the MONET Project.
http://monet.nag.co.uk/cocoon/monet/publicsdocs/monet-overview.pdf

12. C. Sacerdoti Coen. Exportation Module, MoWGLI Deliverable D2.a.
http://mowgli.cs.unibo.it/html no frames/deliverables/transformation/d2a.html

13. C. Sacerdoti Coen. Tactics in Modern Proof-Assistants: the Bad Habit of
Overkilling. In Supplementary Proceedings of the 14th International Conference
TPHOLS 2001, pp. 352–367, Edinburgh.

14. S. Zacchiroli. Web services per il supporto alla dimostrazione interattiva, Master
Thesis, University of Bologna, 2002.

15. J. Zimmer and M. Kohlhase. System Description: The MathWeb Software Bus
for Distributed Mathematical Reasoning. In Proceedings of the 18th International
Conference on Automated Deduction CADE 18, LNAI 2392, Springer Verlag, 2002.

16. R. Zippel. The MathBus. In Workshop on Internet Accessible Mathematical Com-
putation at ISSAC’99, Vancouver, Canada, July 28–31, 1999.


