(* ||M|| This file is part of HELM, an Hypertextual, Electronic ||A|| Library of Mathematics, developed at the Computer Science ||T|| Department, University of Bologna, Italy. ||I|| ||T|| HELM is free software; you can redistribute it and/or ||A|| modify it under the terms of the GNU General Public License \ / version 2 or (at your option) any later version. \ / This software is distributed as is, NO WARRANTY. V_______________________________________________________________ *) module U = NUri module W = Share module L = Log module G = Options module H = Hierarchy module N = Level module E = Entity module O = Output module S = Status module B = Brg module BO = BrgOutput module BE = BrgEnvironment type kam = { e: B.lenv; (* environment *) s: (B.lenv * B.term) list; (* stack *) l: int; (* level *) d: int; (* inferred type iterations *) n: int option; (* expected type iterations *) } type message = (kam, B.term) L.message (* Internal functions *******************************************************) let level = 4 let sublevel = succ level let log1 st s c t = let s1, s2 = s ^ " in the environment", "the term" in L.log st BO.specs level (L.et_items1 s1 c s2 t) let log2 st s cu u ct t = let s1, s2, s3 = s ^ " in the environment (expected)", "the term", "and in the environment (inferred)" in L.log st BO.specs level (L.et_items2 s1 cu s2 u ~sc2:s3 ~c2:ct s2 t) let rec list_and map = function | hd1 :: tl1, hd2 :: tl2 -> if map hd1 hd2 then list_and map (tl1, tl2) else false | l1, l2 -> l1 = l2 let zero = Some 0 (* check closure *) let are_alpha_convertible err f t1 t2 = let rec aux f = function | B.Sort (_, p1), B.Sort (_, p2) | B.LRef (_, p1), B.LRef (_, p2) -> if p1 = p2 then f () else err () | B.GRef (_, u1), B.GRef (_, u2) -> if U.eq u1 u2 then f () else err () | B.Cast (_, v1, t1), B.Cast (_, v2, t2) | B.Appl (_, v1, t1), B.Appl (_, v2, t2) -> let f _ = aux f (t1, t2) in aux f (v1, v2) | B.Bind (_, b1, t1), B.Bind (_, b2, t2) -> let f _ = aux f (t1, t2) in aux_bind f (b1, b2) | _ -> err () and aux_bind f = function | B.Abbr v1, B.Abbr v2 -> aux f (v1, v2) | B.Abst (n1, v1), B.Abst (n2, v2) when n1 = n2 -> aux f (v1, v2) | B.Void, B.Void -> f () | _ -> err () in if W.eq t1 t2 then f () else aux f (t1, t2) let assert_tstep m vo = match m.n with | Some n -> n > m.d | None -> vo let tstep m = {m with d = succ m.d} let tsteps m = match m.n with | Some n when n > m.d -> n - m.d | _ -> 0 let get m i = let _, c, a, b = B.get m.e i in c, a, b (* to share *) let rec step st m x = if !G.trace >= sublevel then log1 st.S.lenv (Printf.sprintf "entering R.step: l:%u d:%i n:%s" m.l m.d (match m.n with Some n -> string_of_int n | None -> "infinite")) m.e x; match x with | B.Sort (a, h) -> if assert_tstep m false then step st (tstep m) (B.Sort (a, H.apply h)) else m, x, None | B.GRef (_, uri) -> begin match BE.get_entity uri with | _, _, _, E.Abbr v -> if st.S.delta then begin if !G.summary then O.add ~gdelta:1 (); step st m v end else m, x, Some v | _, _, _, E.Abst w -> if assert_tstep m true then begin if !G.summary then O.add ~grt:1 (); step st (tstep m) w end else m, x, None | _, _, _, E.Void -> assert false end | B.LRef (_, i) -> begin match get m i with | c, _, B.Abbr v -> if !G.summary then O.add ~ldelta:1 (); step st {m with e = c} v | c, a, B.Abst (_, w) -> if assert_tstep m true then begin if !G.summary then O.add ~lrt:1 (); step st {(tstep m) with e = c} w end else m, B.LRef (a, i), None | _, _, B.Void -> assert false end | B.Cast (_, u, t) -> if assert_tstep m false then begin if !G.summary then O.add ~e:1 (); step st (tstep m) u end else begin if !G.summary then O.add ~epsilon:1 (); step st m t end | B.Appl (_, v, t) -> step st {m with s = (m.e, v) :: m.s} t | B.Bind (a, B.Abst (n, w), t) -> begin match m.s with | [] -> let i = tsteps m in if i = 0 then m, x, None else let n = N.minus st.S.lenv n i in m, B.Bind (a, B.Abst (n, w), t), None | (c, v) :: s -> if !G.cc && not (N.assert_not_zero st.S.lenv n) then assert false; if !G.summary then O.add ~beta:1 ~theta:(List.length s) (); let v = if assert_tstep m false then B.Cast (E.empty_node, w, v) else v in let e = B.push m.e c a (B.abbr v) in step st {m with e = e; s = s} t end | B.Bind (a, b, t) -> if !G.summary then O.add ~theta:(List.length m.s) (); let e = B.push m.e m.e a b in step st {m with e = e} t let reset m ?(e=m.e) n = {m with e = e; n = n; s = []; d = 0} let assert_iterations m1 m2 = match m1.n, m2.n with | Some n1, Some n2 -> n1 - m1.d = n2 - m2.d | _ -> false let push m a b = let a, l = match b with | B.Abst _ -> {a with E.n_apix = m.l}, succ m.l | b -> a, m.l in let e = B.push m.e m.e a b in {m with e = e; l = l} let rec ac_nfs st (m1, t1, r1) (m2, t2, r2) = if !G.trace >= level then log2 st.S.lenv "Now converting nfs" m1.e t1 m2.e t2; match t1, r1, t2, r2 with | B.Sort (_, h1), _, B.Sort (_, h2), _ -> h1 = h2 | B.LRef ({E.n_apix = e1}, _), _, B.LRef ({E.n_apix = e2}, _), _ -> if e1 = e2 then ac_stacks st m1 m2 else false | B.GRef (_, u1), None, B.GRef (_, u2), None -> if U.eq u1 u2 && assert_iterations m1 m2 then ac_stacks st m1 m2 else false | B.GRef ({E.n_apix = e1}, u1), Some v1, B.GRef ({E.n_apix = e2}, u2), Some v2 -> if e1 < e2 then begin if !G.summary then O.add ~gdelta:1 (); ac_nfs st (m1, t1, r1) (step st m2 v2) end else if e2 < e1 then begin if !G.summary then O.add ~gdelta:1 (); ac_nfs st (step st m1 v1) (m2, t2, r2) end else if U.eq u1 u2 && assert_iterations m1 m2 && ac_stacks st m1 m2 then true else begin if !G.summary then O.add ~gdelta:2 (); ac st m1 v1 m2 v2 end | _, _, B.GRef _, Some v2 -> if !G.summary then O.add ~gdelta:1 (); ac_nfs st (m1, t1, r1) (step st m2 v2) | B.GRef _, Some v1, _, _ -> if !G.summary then O.add ~gdelta:1 (); ac_nfs st (step st m1 v1) (m2, t2, r2) | B.Bind (a1, (B.Abst (n1, w1) as b1), t1), _, B.Bind (a2, (B.Abst (n2, w2) as b2), t2), _ -> if !G.cc && not (N.assert_equal st.S.lenv n1 n2) then false else if ac {st with S.si = false} (reset m1 zero) w1 (reset m2 zero) w2 then ac st (push m1 a1 b1) t1 (push m2 a2 b2) t2 else false | B.Sort _, _, B.Bind (a, (B.Abst (n, _) as b), t), _ -> if st.S.si then if !G.cc && not (N.assert_zero st.S.lenv n) then false else begin if !G.summary then O.add ~si:1 (); ac st (push m1 a b) t1 (push m2 a b) t end else false | _ -> false and ac st m1 t1 m2 t2 = (* L.warn "entering R.are_convertible"; *) ac_nfs st (step st m1 t1) (step st m2 t2) and ac_stacks st m1 m2 = (* L.warn "entering R.are_convertible_stacks"; *) if List.length m1.s <> List.length m2.s then false else let map (c1, v1) (c2, v2) = let m1, m2 = reset m1 ~e:c1 zero, reset m2 ~e:c2 zero in ac {st with S.si = false} m1 v1 m2 v2 in list_and map (m1.s, m2.s) (* Interface functions ******************************************************) let empty_kam = { e = B.empty; s = []; l = 0; d = 0; n = None } let get m i = assert (m.s = []); let _, _, _, b = B.get m.e i in b let xwhd st m n t = if !G.trace >= level then log1 st.S.lenv "Now scanning" m.e t; let m, t, _ = step {st with S.delta = true} (reset m n) t in m, t let are_convertible st m1 n1 t1 m2 n2 t2 = if !G.trace >= level then log2 st.S.lenv "Now converting" m1.e t1 m2.e t2; let r = ac {st with S.delta = !G.expand} (reset m1 n1) t1 (reset m2 n2) t2 in r (* let err _ = in if W.eq mu mw then are_alpha_convertible err f u w else err () *) (* error reporting **********************************************************) let pp_term st m och t = BO.specs.L.pp_term st m.e och t let pp_lenv st och m = BO.specs.L.pp_lenv st och m.e let specs = { L.pp_term = pp_term; L.pp_lenv = pp_lenv }