(* ||M|| This file is part of HELM, an Hypertextual, Electronic ||A|| Library of Mathematics, developed at the Computer Science ||T|| Department, University of Bologna, Italy. ||I|| ||T|| HELM is free software; you can redistribute it and/or ||A|| modify it under the terms of the GNU General Public License \ / version 2 or (at your option) any later version. \ / This software is distributed as is, NO WARRANTY. V_______________________________________________________________ *) module U = NUri module S = Share module L = Log module G = Options module H = Hierarchy module N = Layer module E = Entity module O = Output module B = Brg module BO = BrgOutput module BE = BrgEnvironment type rtm = { e: B.lenv; (* environment *) s: (B.lenv * B.term) list; (* stack *) l: int; (* level *) n: int option; (* expected type iterations *) } type message = (rtm, B.term) L.message (* Internal functions *******************************************************) let level = 5 let sublevel = succ level let log1 st s c t = let s1, s2 = s ^ " in the environment", "the term" in L.log st BO.specs (pred level) (L.et_items1 s1 c s2 t) let log2 st s cu u ct t = let s1, s2, s3 = s ^ " in the environment (expected)", "the term", "and in the environment (inferred)" in L.log st BO.specs (pred level) (L.et_items2 s1 cu s2 u ~sc2:s3 ~c2:ct s2 t) let rec list_and map = function | hd1 :: tl1, hd2 :: tl2 -> if map hd1 hd2 then list_and map (tl1, tl2) else false | l1, l2 -> l1 = l2 let zero = Some 0 (* check closure *) let are_alpha_convertible err f t1 t2 = let rec aux f = function | B.Sort p1, B.Sort p2 | B.LRef (_, p1), B.LRef (_, p2) -> if p1 = p2 then f () else err () | B.GRef (_, u1), B.GRef (_, u2) -> if U.eq u1 u2 then f () else err () | B.Cast (v1, t1), B.Cast (v2, t2) | B.Appl (_, v1, t1), B.Appl (_, v2, t2) -> let f _ = aux f (t1, t2) in aux f (v1, v2) | B.Bind (_, b1, t1), B.Bind (_, b2, t2) -> let f _ = aux f (t1, t2) in aux_bind f (b1, b2) | _ -> err () and aux_bind f = function | B.Abbr v1, B.Abbr v2 -> aux f (v1, v2) | B.Abst (r1, n1, v1), B.Abst (r2, n2, v2) when r1 = r2 && n1 = n2 -> aux f (v1, v2) | B.Void, B.Void -> f () | _ -> err () in if S.eq t1 t2 then f () else aux f (t1, t2) let assert_tstep m vo = match m.n with | Some n -> n > 0 | None -> vo let tstep m = match m.n with | Some n -> {m with n = Some (pred n)} | None -> m let tsteps m = match m.n with | Some n -> n | None -> 0 let get m i = let _, c, a, _, b = B.get m.e i in c, a, b (* to share *) let rec step st m r = IFDEF TRACE THEN if !G.ct >= sublevel then log1 st (Printf.sprintf "entering R.step: l=%u, n=%s," m.l (match m.n with Some n -> string_of_int n | None -> "infinite")) m.e r ELSE () END; match r with | B.Sort k -> if assert_tstep m false then step st (tstep m) (B.Sort (H.apply k)) else m, r, None | B.GRef (_, u) -> begin match BE.get_entity u with | _, a, _, E.Abbr v -> m, B.gref a u, Some v | _, _, _, E.Abst w -> if assert_tstep m true then begin IFDEF SUMMARY THEN if !G.summary then O.add ~grt:1 () ELSE () END; step st (tstep m) w end else m, r, None | _, _, _, E.Void -> assert false end | B.LRef (_, i) -> begin match get m i with | c, _, B.Abbr v -> IFDEF SUMMARY THEN if !G.summary then O.add ~ldelta:1 () ELSE () END; step st {m with e = c} v | c, a, B.Abst (_, _, w) -> if assert_tstep m true then begin IFDEF SUMMARY THEN if !G.summary then O.add ~lrt:1 () ELSE () END; step st {(tstep m) with e = c} w end else m, B.lref a i, None | _, _, B.Void -> assert false end | B.Cast (u, t) -> if assert_tstep m false then begin IFDEF SUMMARY THEN if !G.summary then O.add ~e:1 () ELSE () END; step st (tstep m) u end else begin IFDEF SUMMARY THEN if !G.summary then O.add ~epsilon:1 () ELSE () END; step st m t end | B.Appl (_, v, t) -> step st {m with s = (m.e, v) :: m.s} t | B.Bind (y, B.Abst (false, n, w), t) -> let i = tsteps m in IFDEF SUMMARY THEN if !G.summary then O.add ~x:i () ELSE () END; let n = if i = 0 then n else N.minus st n i in let r = B.Bind (y, B.Abst (true, n, w), t) in step st m r | B.Bind (y, B.Abst (true, n, w), t) -> if !G.si || N.is_not_zero st n then begin match m.s with | [] -> m, B.Bind (y, B.Abst (true, n, w), t), None | (c, v) :: s -> IFDEF SUMMARY THEN if !G.summary then O.add ~beta:1 ~theta:(List.length s) () ELSE () END; let v = B.Cast (w, v) in let e = B.push m.e c E.empty_node y (B.abbr v) in step st {m with e = e; s = s} t end else begin IFDEF SUMMARY THEN if !G.summary then O.add ~upsilon:1 () ELSE () END; let e = B.push m.e m.e E.empty_node y B.Void in (**) (* this is wrong in general *) step st {m with e = e} t end | B.Bind (y, b, t) -> IFDEF SUMMARY THEN if !G.summary then O.add ~theta:(List.length m.s) () ELSE () END; let e = B.push m.e m.e E.empty_node y b in step st {m with e = e} t let assert_iterations m1 m2 = m1.n = m2.n let reset m ?(e=m.e) n = {m with e = e; n = n; s = []} let push m y b = let a, l = match b with | B.Abst _ -> E.node_attrs ~apix:m.l (), succ m.l | _ -> E.empty_node, m.l in let e = B.push m.e m.e a y b in {m with e = e; l = l} let rec ac_nfs st (m1, t1, r1) (m2, t2, r2) = IFDEF TRACE THEN if !G.ct >= level then log2 st "Now converting nfs" m1.e t1 m2.e t2 ELSE () END; match t1, r1, t2, r2 with | B.Sort k1, _, B.Sort k2, _ -> k1 = k2 | B.LRef ({E.n_apix = e1}, _), _, B.LRef ({E.n_apix = e2}, _), _ -> if e1 = e2 then ac_stacks st m1 m2 else false | B.GRef (_, u1), None, B.GRef (_, u2), None -> if U.eq u1 u2 && assert_iterations m1 m2 then ac_stacks st m1 m2 else false | B.GRef ({E.n_apix = e1}, u1), Some v1, B.GRef ({E.n_apix = e2}, u2), Some v2 -> if U.eq u1 u2 && assert_iterations m1 m2 && ac_stacks st m1 m2 then true else if e1 < e2 then begin IFDEF SUMMARY THEN if !G.summary then O.add ~gdelta:1 () ELSE () END; ac_nfs st (m1, t1, r1) (step st m2 v2) end else if e2 < e1 then begin IFDEF SUMMARY THEN if !G.summary then O.add ~gdelta:1 () ELSE () END; ac_nfs st (step st m1 v1) (m2, t2, r2) end else begin IFDEF SUMMARY THEN if !G.summary then O.add ~gdelta:2 () ELSE () END; ac st m1 v1 m2 v2 end | _, _, B.GRef _, Some v2 -> IFDEF SUMMARY THEN if !G.summary then O.add ~gdelta:1 () ELSE () END; ac_nfs st (m1, t1, r1) (step st m2 v2) | B.GRef _, Some v1, _, _ -> IFDEF SUMMARY THEN if !G.summary then O.add ~gdelta:1 () ELSE () END; ac_nfs st (step st m1 v1) (m2, t2, r2) | B.Bind (y1, (B.Abst (true, n1, w1) as b1), t1), _, B.Bind (y2, (B.Abst (true, n2, w2) as b2), t2), _ -> if ((!G.cc && N.assert_equal st n1 n2) || N.are_equal st n1 n2) && ac st (reset m1 zero) w1 (reset m2 zero) w2 then ac st (push m1 y1 b1) t1 (push m2 y2 b2) t2 else false | B.Sort _, _, B.Bind (y, B.Abst (true, n, _), t), _ -> if !G.si then if !G.cc && not (N.assert_zero st n) then false else begin IFDEF SUMMARY THEN if !G.summary then O.add ~upsilon:1 () ELSE () END; ac st (push m1 y B.Void) t1 (push m2 y B.Void) t end else false | _ -> false and ac st m1 t1 m2 t2 = (* L.warn "entering R.are_convertible"; *) ac_nfs st (step st m1 t1) (step st m2 t2) and ac_stacks st m1 m2 = (* L.warn "entering R.are_convertible_stacks"; *) if List.length m1.s <> List.length m2.s then false else let map (c1, v1) (c2, v2) = let m1, m2 = reset m1 ~e:c1 zero, reset m2 ~e:c2 zero in ac st m1 v1 m2 v2 in list_and map (m1.s, m2.s) let rec ih_nfs st (m, t, r) = match t, r with | B.GRef _, Some v -> IFDEF SUMMARY THEN if !G.summary then O.add ~gdelta:1 () ELSE () END; ih st m v | _ -> m, t and ih st m t = ih_nfs st (step st m t) (* Interface functions ******************************************************) let empty_rtm = { e = B.empty; s = []; l = 0; n = None } let get m i = assert (m.s = []); let _, _, _, _, b = B.get m.e i in b let xwhd st m n t = IFDEF TRACE THEN if !G.ct >= level then log1 st "Now scanning" m.e t ELSE () END; ih st (reset m n) t let are_convertible st m1 n1 t1 m2 n2 t2 = IFDEF TRACE THEN if !G.ct >= level then log2 st "Now converting" m1.e t1 m2.e t2 ELSE () END; let r = ac st (reset m1 n1) t1 (reset m2 n2) t2 in r (* let err _ = in if S.eq mu mw then are_alpha_convertible err f u w else err () *) (* error reporting **********************************************************) let pp_term st m och t = BO.specs.L.pp_term st m.e och t let pp_lenv st och m = BO.specs.L.pp_lenv st och m.e let specs = { L.pp_term = pp_term; L.pp_lenv = pp_lenv }