(* ||M|| This file is part of HELM, an Hypertextual, Electronic ||A|| Library of Mathematics, developed at the Computer Science ||T|| Department, University of Bologna, Italy. ||I|| ||T|| HELM is free software; you can redistribute it and/or ||A|| modify it under the terms of the GNU General Public License \ / version 2 or (at your option) any later version. \ / This software is distributed as is, NO WARRANTY. V_______________________________________________________________ *) module U = NUri module C = Cps module W = Share module L = Log module E = Entity module N = Level module O = Output module Q = Ccs module S = Status module B = Brg module BO = BrgOutput module BE = BrgEnvironment type kam = { e: B.lenv; (* environment *) s: (B.lenv * B.term) list; (* stack *) d: int (* depth *) } (* Internal functions *******************************************************) let level = 5 let log1 s c t = let sc, st = s ^ " in the environment", "the term" in L.log BO.specs level (L.et_items1 sc c st t) let log2 s cu u ct t = let s1, s2, s3 = s ^ " in the environment", "the term", "and in the environment" in L.log BO.specs level (L.et_items2 s1 cu s2 u ~sc2:s3 ~c2:ct s2 t) let rec list_and map = function | hd1 :: tl1, hd2 :: tl2 -> if map hd1 hd2 then list_and map (tl1, tl2) else false | l1, l2 -> l1 = l2 (* check closure *) let are_alpha_convertible err f t1 t2 = let rec aux f = function | B.Sort (_, p1), B.Sort (_, p2) | B.LRef (_, p1), B.LRef (_, p2) -> if p1 = p2 then f () else err () | B.GRef (_, u1), B.GRef (_, u2) -> if U.eq u1 u2 then f () else err () | B.Cast (_, v1, t1), B.Cast (_, v2, t2) | B.Appl (_, v1, t1), B.Appl (_, v2, t2) -> let f _ = aux f (t1, t2) in aux f (v1, v2) | B.Bind (_, b1, t1), B.Bind (_, b2, t2) -> let f _ = aux f (t1, t2) in aux_bind f (b1, b2) | _ -> err () and aux_bind f = function | B.Abbr v1, B.Abbr v2 -> aux f (v1, v2) | B.Abst (n1, v1), B.Abst (n2, v2) when n1 = n2 -> aux f (v1, v2) | B.Void, B.Void -> f () | _ -> err () in if W.eq t1 t2 then f () else aux f (t1, t2) let get m i = let _, c, a, b = B.get m.e i in c, a, b (* to share *) let rec step st m x = (* L.warn "entering R.step"; *) match x with | B.Sort _ -> m, None, x | B.GRef (_, uri) -> begin match BE.get_entity uri with | _, _, E.Abbr v when st.S.delta -> O.add ~gdelta:1 (); step st m v | _, _, E.Abst (_, w) when st.S.rt -> O.add ~grt:1 (); step st m w | a, _, E.Abbr v -> let e = E.apix C.err C.start a in m, Some (e, a, B.Abbr v), x | a, _, E.Abst (n, w) -> let e = E.apix C.err C.start a in m, Some (e, a, B.Abst (n, w)), x | _, _, E.Void -> assert false end | B.LRef (_, i) -> begin match get m i with | c, _, B.Abbr v -> O.add ~ldelta:1 (); step st {m with e = c} v | c, _, B.Abst (_, w) when st.S.rt -> O.add ~lrt:1 (); step st {m with e = c} w | c, _, B.Void -> assert false | c, a, (B.Abst _ as b) -> let e = E.apix C.err C.start a in {m with e = c}, Some (e, a, b), x end | B.Cast (_, _, t) -> O.add ~tau:1 (); step st m t | B.Appl (_, v, t) -> step st {m with s = (m.e, v) :: m.s} t | B.Bind (a, B.Abst (n, w), t) -> begin match m.s with | [] -> m, None, x | (c, v) :: s -> if N.is_zero n then Q.add_nonzero st.S.cc a; O.add ~beta:1 ~theta:(List.length s) (); let e = B.push m.e c a (B.abbr v) (* (B.Cast ([], w, v)) *) in step st {m with e = e; s = s} t end | B.Bind (a, b, t) -> O.add ~theta:(List.length m.s) (); let e = B.push m.e m.e a b in step st {m with e = e} t let push m a b = assert (m.s = []); let a, d = match b with | B.Abst _ -> E.Apix m.d :: a, succ m.d | b -> a, m.d in let e = B.push m.e m.e a b in {m with e = e; d = d} let rec ac_nfs st (m1, r1, u) (m2, r2, t) = log2 "Now converting nfs" m1.e u m2.e t; match r1, u, r2, t with | _, B.Sort (_, h1), _, B.Sort (_, h2) -> h1 = h2 | Some (e1, _, B.Abst _), _, Some (e2, _, B.Abst _), _ -> if e1 = e2 then ac_stacks st m1 m2 else false | Some (e1, _, B.Abbr v1), _, Some (e2, _, B.Abbr v2), _ -> if e1 = e2 then if ac_stacks st m1 m2 then true else begin O.add ~gdelta:2 (); ac st m1 v1 m2 v2 end else if e1 < e2 then begin O.add ~gdelta:1 (); ac_nfs st (m1, r1, u) (step st m2 v2) end else begin O.add ~gdelta:1 (); ac_nfs st (step st m1 v1) (m2, r2, t) end | _, _, Some (_, _, B.Abbr v2), _ -> O.add ~gdelta:1 (); ac_nfs st (m1, r1, u) (step st m2 v2) | Some (_, _, B.Abbr v1), _, _, _ -> O.add ~gdelta:1 (); ac_nfs st (step st m1 v1) (m2, r2, t) | _, B.Bind (a1, (B.Abst (n1, w1) as b1), t1), _, B.Bind (a2, (B.Abst (n2, w2) as b2), t2) -> if n1 = n2 then () else Q.add_equal st.S.cc a1 a2; if ac {st with S.si = false} m1 w1 m2 w2 then ac st (push m1 a1 b1) t1 (push m2 a2 b2) t2 else false | _, B.Sort _, _, B.Bind (a, (B.Abst (n, _) as b), t) -> if N.is_zero n then () else Q.add_zero st.S.cc a; O.add ~si:1 (); ac st (push m1 a b) u (push m2 a b) t | _ -> false and ac st m1 t1 m2 t2 = (* L.warn "entering R.are_convertible"; *) ac_nfs st (step st m1 t1) (step st m2 t2) and ac_stacks st m1 m2 = (* L.warn "entering R.are_convertible_stacks"; *) if List.length m1.s <> List.length m2.s then false else let map (c1, v1) (c2, v2) = let m1, m2 = {m1 with e = c1; s = []}, {m2 with e = c2; s = []} in ac {st with S.si = false} m1 v1 m2 v2 in list_and map (m1.s, m2.s) (* Interface functions ******************************************************) let empty_kam = { e = B.empty; s = []; d = 0 } let get m i = assert (m.s = []); let _, _, _, b = B.get m.e i in b let xwhd st m t = L.box level; log1 "Now scanning" m.e t; let m, _, t = step {st with S.delta = true; S.rt = true} m t in L.unbox level; m, t let are_convertible st mu u mw w = L.box level; log2 "Now converting" mu.e u mw.e w; let r = ac {st with S.delta = st.S.expand; S.rt = false} mu u mw w in L.unbox level; r (* let err _ = in if W.eq mu mw then are_alpha_convertible err f u w else err () *) (* error reporting **********************************************************) let pp_term m frm t = BO.specs.L.pp_term m.e frm t let pp_lenv frm m = BO.specs.L.pp_lenv frm m.e let specs = { L.pp_term = pp_term; L.pp_lenv = pp_lenv }