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Landau’s “Grundlagen der Analysis” formalized in the language Aut−QE, represents an early
milestone in computer-checked mathematics and is the only non-trivial development finalized in
the languages of the Automath family. Here we discuss an implemented procedure producing a
faithful version of the “Grundlagen” in the language of Pure Type Systems, effectively accepted by
the proof assistant Coq. The point at issue is distinguishing λ-abstractions from Π-abstractions
where the original text uses Automath unified binders, taking care of the cases in which a binder
corresponds to both abstractions at one time. It is a fact that some binders are disambiguated
only by validating the “Grundlagen” against a type system accepting Aut−QE. To this end, we
rely on λδ “Version 3”, a calculus that the author is developing within the HELM working group.

1. INTRODUCTION

Landau’s “Grundlagen der Analysis” [Lan65], formalized by Jutting [vB77] in the
Automath language Aut−QE [vD94a] (henceforth, the u−GdA), represents an early
milestone in computer-checked mathematics and is the only non-trivial development
finalized in the languages of the Automath family [NGdV94].
Actually, the use of the u−GdA as a background for significant formalized math-

ematics, is limited by the fact that Aut−QE and the tools for its management
[Wie02], seem incapable to compete with the most recent logical frameworks and
with the state-of-the-art proof management systems (PMS’s) based on them.
Anyway, some authors proposed translations of Aut−QE into Pure Type Systems

(PTS’s) [Bar93, KLN03, Bro11], and studied the possibility of making the u−GdA
theoretically accessible to PTS-accepting systems like Coq [Coq14].
Here we take a step further: we discuss an implemented procedure producing a

PTS-based version of the u−GdA, the λΠ−GdA, effectively accepted by Coq.
The validation of a λΠ−GdA for the PMS Matita [ARST11] is work in progress.
The concrete syntax of the typical Automath language is best known for its

unified binding construction [x:N]M, as well as for its reversed application <N>M. In
a PTS, the first one corresponds either to the abstraction λxN.M , or to the function
type ΠxN.M , while the second one corresponds to the application (M N).
We shall see that our translation is faithful in that the u−GdA is αδη-equivalent

to the λΠ−GdA, once abstractions and function types are replaced by the corre-
sponding unified binding constructions. We stress that Automath’s η-equivalence
is M = [x:N]<x>M, which in the PTS world, may correspond either to η-equivalence,
or to Π-introduction/elimination (when M is a function and [x:N] is ΠxN).
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In particular, η-equivalence solves the incompatibilities between Aut−QE and
the PTS. On the other hand, δ-equivalence is introduced for convenience. Finally,
α-equivalence is due to different naming conventions in the u−GdA and in Coq.
A main issue of the translation is that of deciding if a given unified binder cor-

responds to a λ-binder, or to a Π-binder. While static analysis suffices to disam-
biguate the majority of the approximately 47000 unified binders of the u−GdA,
almost 3000 such binders can be disambiguated only by observing their behavior
during the validation of the u−GdA against a type system that accepts Aut−QE.
To this end, we rely on λδ “Version 3”, a calculus outlined in this article, that

the author is developing in the context of the HELM working group [APS+03].
Being an Automath “book”, the u−GdA amounts to a list of (almost 7000)

constants declared or defined within a system of sections (known as “paragraphs”),
and introduced in a context of unified binders (known as “block openers”).
Moreover, the terms of Aut−QE are organized in three classes (kinds, types, and

elements) comprising two sorts, references, applications, and unified bindings.
Therefore, once references are solved, and unified binders are disambiguated,

translating the u−GdA into a PTS with constants and type casts, is not an issue.
In particular, by static analysis (Section 2), followed by dynamic analysis (Sec-

tion 3), we build a λδ version of the u−GdA, to be termed the λδ−GdA.
This is mapped straightforwardly to a user-level script, the λΠ−GdA, which is

fully accepted by Coq. Our conclusions are in Section 4.

2. STATIC ANALYSIS OF THE “GRUNDLAGEN”

Landau’s “Grundlagen der Analysis” [Lan65] contains 301 propositions on the
arithmetics of rational, irrational and complex numbers. This theory was digi-
tally specified in the language Aut−QE [vD94a] by Jutting [vB77]. Later, it was
recovered from Jutting’s original files by Wiedijk, who included it in the latest
distribution of his validator for Aut−68 [vB94a] and Aut−QE.
Unfortunately, we have scarce practical information on the specification, and we

are still missing Jutting’s detailed explanation of the u−GdA (five volumes titled
“A translation of Landau’s Grundlagen in AUTOMATH ” of which only the cover
pages are available). Here is a summary of what we know up to now [Gui09].

—The concrete syntax, found in [Wie99], (see Section 2.1) relies on the next facilities
meant to decrease the verbosity of Automath “books”.

—The “block system” allows to share the formal parameters that several “global
constants” have in common (see Section 2.2). Actually, the discussion on “in-
stantiation” in [dB91] explains that this is more than a mere facility.

—The “paragraph system”, briefly mentioned in [Zan94] and fully explained in
[vB77], allows to reuse identifiers avoiding name collisions (see Section 2.3).

—The “abbreviation system” (i.e., the “shorthand facility” [vD94a]) allows to omit
some actual parameters in a reference to a “global constant” (see Section 2.4).

In any case, some aspects of these facilities seem undocumented and thus remain
ambiguous to us. As a reasonable way out, we checked how these ambiguities are
solved in the u−GdA knowing that the specification must be correct as it stands.
Contrary to Aut−QE, the formal system λδ (see Section 3.1) is an abstract lan-

guage not supporting any facility in the first place. Therefore, in the first step of
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(contents)

<book> ::= [ <line> ]* <EOF>

<line> ::= <section> | <context> | <opener> | <decl> | <def>

<section> ::= "+" [ "*" ]? <id> | "-" <id> | "--"

<context> ::= <STAR> | <qid> <STAR>

<opener> ::= <id> <DEF> <EB> <E> <term>

| <id> <E> <term> <DEF> <EB>

| "[" <id> <OF> <term> "]"

<decl> ::= <id> <DEF> <PN> <E> <term>

| <id> <E> <term> <DEF> <PN>

<def> ::= <id> <DEF> [ "~" ]? <term> <E> <term>

| <id> <E> <term> <DEF> [ "~" ]? <term>

<term> ::= <TYPE> | <PROP>

| <qid> [ "(" [ <term> [ "," <term> ]* ]? ")" ]?

| "[" <id> <OF> <term> "]" <term>

| "<" <term> ">" <term>

<qid> ::= <id> [ ‘"‘ [ <id> ]? [ <PATH> <id> ]* ‘"‘ ]?

<id> ::= [ "0"-"9" | "A"-"Z" | "a"-"z" | "_" | "’" | "‘" ]+

(presentational variants)

<STAR> ::= "*" | "@"

<DEF> ::= ":=" | "="

<EB> ::= "---" | "’eb’" | "EB"

<PN> ::= "???" | "’pn’" | "PN" | "’prim’" | "PRIM"

<E> ::= "_E" | "’_E’" | ";" | ":"

<OF> ::= ":", ","

<TYPE> ::= "’type’" | "TYPE"

<PROP> ::= "’prop’" | "PROP"

<PATH> ::= "-", "."

<EOF> ::= ";" | eof

(spaces and comments)

<space> ::= [ space | tab | newline ]+

<comment> ::= [ "#" | "%" ] [ . ]* [ newline | eof ]

| "{" [ . ]* "}"

Fig. 1. Automath concrete syntax

" " the enclosed characters | choice
‘"‘ the character " [ ]? optional
space tab newline eof special characters [ ]* zero or more
- any character in the specified range [ ]+ one or more
. any character [ ] bracketing

Fig. 2. Conventions for displaying the concrete syntax

our translation, a static analyzer removes the Aut−QE shorthand from the u−GdA
and disambiguates most of its unified binders as we explain in Section 2.5.
The product of this step is a “raw” version of the λδ−GdA in which the remaining

binders are still ambiguous and, thus, need additional processing.

2.1 Parsing

The grammar recognized by our Automath parser is presented in Figure 1 (our
notational conventions for displaying grammars are in Figure 2). Properly nested
comments are accepted. It should be noted that the Automath grammar evolved
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trough time and has many variants [NGdV94], which we try to capture. However,
our parser recognizes “_E” in place of the original “underscored E”, but this is not
a problem since this notation does not appear in the u−GdA.
It is important to recall the structure of a formal specification in the language

Aut−QE. A text written in an Automath language (also known as an Automath
“book”) is structured as a sequence of lines, each asserting a statement. The
following kinds of statement are available:

—Sectioning-related statement. This statement opens or closes a “paragraph” (a
better translation would be a “section” as pointed out in [Wie99]). Automath
“paragraphs” are possibly nested named scopes in which the global constants
are declared or defined. It should be noted that a previously closed scope can
be reopened. Moreover in a well-formed Automath book, sections are properly
nested so only the last opened section can be closed.

—Block opener. This statement introduces a local declaration in a given context.
The semantics of context formation is recalled in Section 2.2.

—Global declaration. This is like the block opener but the declaration is global.

—Global definition. This statement defines an identifier as an abbreviation of a
term explicitly typed in a given context. There is a way, never used in the u−GdA,
to inhibit the δ-expansion of the defined identifier in order to speed reduction.

An identifier declared or defined by a statement which is not sectioning-related,
is termed a “notion”. Moreover, the “notions” that are not “block openers” will
be termed “global constants”. Automath terms and types are λ-terms of a single
syntactic category comprising two sorts, references, unified typed abstractions, and
binary applications. References to global constants may have actual parameters
and a section indicator acting as a qualifier (see Section 2.3).

2.2 Context Chains

The “block system” is a peculiar feature of every concrete Automath language
[NGdV94]. In principle, a global constant has a list of formal parameters that are
retrieved by following a chain of “block openers”, each representing a parameter
declaration. To this end, every “notion” has a “context marker” indicating the
start of its chain (i.e., its “context”). The rules for constructing this chain, follow.

—If the “notion” has an empty marker, then its chain is empty.

—If the “notion” has a reference marker pointing to a “block opener”, then its
chain contains the chain of the “block opener” plus the “block opener” itself.

—If the “notion” has no marker and the preceding statement is a “block opener”,
then the intended marker is a reference to it.

—If the “notion” has no marker and the preceding statement is a global declaration
or definition, then the intended marker is the one of that statement (recursively).

The intended meaning of “preceding” in the last two rules becomes unclear when
the “paragraph system” is in effect. Given that the “Grundlagen” becomes incor-
rect if “preceding” is understood literally, we argue that the “block system” must
be aware of the “paragraph system” somehow. In particular, “preceding” reason-
ably means “preceding in the same section or in its parent”, but may also mean
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“preceding in the same section fragment or in its parent” (recall that sections can
be closed and reopened, thus a section might be divided in many fragments).
The u−GdA does not help to solve this ambiguity because Jutting always reopens

a section with a statement having an explicit context marker.

2.3 Paragraphs

The proper lines of an Automath text using the “paragraph system” facility, i.e.,
the lines that are not sectioning-related, are grouped into possibly nested named
sections. Furthermore, a “complete index” is assigned to each such line. This is the
list of the sections’ names containing that line, sorted according to the outermost-to-
innermost order. The “paragraph system” specification requires a “cover” section
(named “l” in the u−GdA) enclosing the entire “book”, so a complete index is
never empty. A section can be reopened at the same nesting level but two sections
having the same name can not be nested. Once the index of a line is computed, that
line receives a URI based on that index [Gui09]. Note that the “rule for constants”
stated in the specification of the “paragraph system”, implies that different proper
lines of a well-formed “book” always receive different URI’s.
A reference r in a line l can have a “complete index” or an “incomplete index”

or no index at all. Such a reference is resolved by computing either the position
index of the referred local declaration, or the URI of the referred “notion”.
The original resolution rules from [vB77] Appendix 2, are given next.

—If r has a “complete index” j, being the concatenation of the component s before
the list jt, and if the line l has the “complete index” i, being the concatenation
of the list ih before the component s and before the list it, then a “constant”
with r’s name is looked up in the section whose index is the concatenation of ih
before j. Such a “constant” must exist and r receives its URI.

—If r has the “incomplete index” j and if the line l has the “complete index” i,
then a “constant” with r’s name is looked up in the section whose index is the
concatenation of i before j. Such a “constant” must exist and r receives its URI.

—If r has no index, a declaration with r’s name is looked up in the local environment
of r. If such a declaration exists, r receives its depth index [dB94].

—On the other hand, a “constant” with r’s name is looked up in the sections
containing the line l, sorted according to the innermost-to-outermost order. Such
a “notion” must exist and r is resolved by receiving its URI.

—If r is a “context marker”, then r must refer to a “block opener” otherwise r
must refer to a “global constant”, or to a declaration in r’s local environment.

Our implemented processor generalizes the first two rules by extending the search
for a notion that should be in a section, say k, to the sections containing k, sorted
according to the innermost-to-outermost order. This mechanism agrees with the
forth rule and allows to regard a reference without an index as having the “complete
index” of the line in which it occurs. We remark that a reference without an index
is resolved first in its local environment and then in the global environment. This
seems to be the originally intended order of precedence because the u−GdA fails to
validate if we reverse this precedence [Wie99].
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2.4 Implicit Arguments

The “abbreviation system” [vD94a] is a facility of some concrete Automath lan-
guages including the extension of Aut−QE that Jutting used for the the u−GdA.
This facility works as follows: suppose that a “constant” c is defined or declared

in a context Γ of formal parameters, say x1, . . . , xn. Then a reference to c in
a subsequent line, say l, generally needs to be applied to n actual parameters
and thus appears like c(t1, . . . , tn). Nevertheless, if the context Γ is an initial
segment of the context of the “notion” defined or declared in the line l, where the
reference to c appears, this reference is allowed to take less than n actual parameters
and c(tm+1, . . . , tn) must be interpreted as c(x1, . . . , xm, tm+1, . . . , tn). Here we are
assuming m ≤ n, thus all actual parameters may be omitted in some cases.

2.5 Static Disambiguation of Unified Binders

Our static analyzer implements two strategies for disambiguating the binders of the
u−GdA. One strategy is degree-based [Bro11], while the other is position-based.
Note that both strategies rely on the fact that the u−GdA is in β-normal form.
In the disambiguation process each binder receives a “layer constant”, which is

either “Π”, or “λ”, or else it receives a “layer variable” in case of ambiguity.

—According to the degree-based strategy, we compute the degree of a binder by
innermost-to-outermost propagation. Since Aut−QE features three degrees of
terms, we argue that a binder of lowest degree (i.e., one) is a “Π”, whereas a
binder of highest degree (i.e., three) is a “λ”. A binder of degree two remains
ambiguous. This strategy is not applied to the “block-opening” binders.

—According to the position-based strategy, a “block-opener” in the context of a
declared constant is a “Π”. On the other hand, a “block-opener” in the context
of a defined constant is a “λ”, that is β-reduced when that constant is referred
to. Moreover, a binder placed along the “spine” of a term representing a type
annotation, must be a “Π”. The other binders remain ambiguous.

The positioning information is computed by outermost-to-innermost propagation.
Therefore, our our static disambiguation procedure is bidirectional.
Finally, our analyzer annotates all binders with their sort (i.e., either “Type”, or

“Prop”) as hints for presenting Π-binders as ∀-binders when their sort is “Prop”.

3. DYNAMIC ANALYSIS OF THE “GRUNDLAGEN”

The “raw” version of the λδ−GdA produced by our static analyzer is an environment
G of λδ “Version 3” (see Section 3.1) in which a primitive constant p of type W in
the context L corresponds to the entry λp(L.W ), while a defined constant p with
body V of type W in the context L corresponds to the entry δp(L.©W.V ).
Here L.T is the term formed by concatenating the entries of L before T .
Note that this encoding improves the one of [Gui09], where we map the defined

constant p to the entry δp(©(L.W ).(L.V )) (i.e., the context L is not shared).
To the end of managing the ambiguous binders, we allow layer variables (say: φ,

ψ) in abstractors. Therefore, a typical ambiguous abstraction looks like λφxW.T .
The “raw” λδ−GdA is analyzed by applying a validation procedure that produces

a system of constraints on the layer variables (see Section 3.5). Once this system is
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natural number i, j, k, p starting at 0
natural number or ∞ e starting at 0
term T,U,V,W ∶∶= ⋆k ∣ #i ∣ $p ∣ δV.T ∣ λeW.T ∣ @V.T ∣©W.T

local environment K,L ∶∶= ⋆ ∣ L.δV ∣ L.λeW

global environment F,G ∶∶= ⋆ ∣ G.δV ∣ G.λW

Fig. 3. Terms and environments.

solved (also by correcting some points of the u−GdA as we explain in Section 3.6),
the “proper” λδ−GdA, without layer variables, is mapped to the λΠ−GdA, i.e., our
final outcome. This is a single user-level script that can be effectively presented to
the PMS Coq for validation in the Calculus of Constructions [CH88].
The apparatus for validating in λδ “Version 3” derives essentially from [Gui10a],

which refers to a previous version of the calculus, and consists of a reduction ma-
chine (Section 3.2), a “comparator” (Section 3.3) asserting convertibility in context,
and a “validator” (Section 3.4) implementing the top-level validation algorithm.
We want to keep the focus of this article on the “Grundlagen”, so our description

of λδ “Version 3” and of this machinery will contain minimal formalism.

3.1 An Overview of λδ Version 3: “To Π . . . and Beyond”

The formal system λδ is a typed λ-calculus originally conceived by the author as an
extension of Λ∞ [vB94b]. The system is evolving constantly as updated versions are
released from time to time. The present “Version 3”, implemented for the dynamic
analysis of the u−GdA, still lacks a theoretical study. Nevertheless, it should be a
conservative extension of the previous “Version 2a” [Gui14], whose desirable prop-
erties are certified. In particular, it supports the formation of universes through
“type inclusion by reduction” (inspired by the “sort inclusion” of [Zan94]).
Looking at [Gui14], we annotate λ-abstractions with an integer “layer” e in the

range 0 ≤ e ≤ ∞, and we agree that a λe-abstraction is typed by a λe−1-abstraction.
Moreover we restrict β-contractions to λe+1-abstractions, and we allow the equiva-
lent of ζ-contraction for λ0-abstractions. Finally we set ∞− 1 = ∞+ 1 = ∞.
As an additional feature, we add environments with constants referred by level.
A formal exposition of the language is not in the scope of the article. We just

introduce its syntax and its key rules, keeping formalism at the bare minimum.

Definition 1. Terms and environments are defined in Figure 3. ⋆k is the sort of
index k, #i is the reference to the variable introduced at depth i [dB94] (so i is a “de
Bruijn index”), $p is the reference to the constant introduced at level p, δV.T is the
abbreviation “let #0 = V in T ”, λeW.T is the abstraction “(#0 ∶W ) ↦ T” in layer
e, @V.T is the application “T (V )”, and©W.T is the type annotation “(T ∶W )”. ⋆
is the empty environment, L.δV is L with the variable definition “let #0 = V ”, and
L.λeW is L with the variable declaration “(#0 ∶W )” in layer e. G.δV is G with the
constant definition “let $∣G∣ = V ”, and G.λW is G with the constant declaration
“($∣G∣ ∶W )”. Here ∣G∣ is the number of entries in G. ▲

Definition 2. We update the rules of [Gui14] named “Figure 13(β)” (transitions),
“Figure 18(bind)” (iterated static type assignment), and “Figure 22(appl)” (strati-
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G,L ⊢ @V.λe+1W.T → δ(©W.V ).T
β

↑⟨0,1⟩ T2 = T1

G,L ⊢ λ0W.T1 → T2

υ

G,L.δ/λeW ⊢ T ●
∗(n)
h

U

G,L ⊢ δ/λeW.T ●
∗(n)
h

δ/λe−1W.U
bind

G,L ⊢ V ! h,g G,L ⊢ T ! h,g G,L ⊢ V ●∗⇉
∗(1)
h,g

W0 G,L ⊢ T ●∗⇉
∗(n)
h,g

λe+1W0.U0

G,L ⊢ @V.T ! h,g
appl

Fig. 4. Key reduction and validation rules.

fied validity), with the rules of Figure 4. Moreover, we introduce the υ-contraction
of Figure 4(υ), producing Zandleven-style “type inclusion” [Zan94]. ▲

A main observation concerns the inhabitation of sorts in the next situation. Un-
der the assumption Γ, (x ∶W ) ⊢M ∶ T ∶ s where s is a sort, in a PTS we may have
Γ ⊢ λxW.M ∶ ΠxW.T ∶ s. On the other hand, assuming G,L.λ2xW ⊢ M ● T and
G,L.λ1xW ⊢ T ● s, in λδ “Version 3” we have G,L ⊢ λ2xW.M ● λ1xW.T ● λ

0
xW.s

where λ2xW.M corresponds to λxW.M , and λ1xW.T corresponds to ΠxW.T , and
G,L ⊢ λ0xW.s → s by υ-contraction. In this respect, λ0xW is an “hyper-Π” (i.e., a
“beyond-Π”) serving as a constructor of some “quasi-expressions” of Aut−QE.
Another observation concerns the typable applications. Under the assumption

Γ ⊢M ∶ ΠxW.T , in a PTS we may have Γ ⊢M(N) ∶ [x←N]T . On the other hand,
under the corresponding assumption G,L ⊢ M ● λ1xW.T , in λδ “Version 3” we
have G,L ⊢ @N.M ● @N.λ1xW.T where G,L ⊢ @N.λ1xW.T → δx(©W.N).T by β-
contraction, and then δx(©W.N).T computes to [x←N]T by δ-expansion followed
by ǫ-contraction (i.e., elimination of type annotations). In this respect, we see that
β-contraction on λ1, i.e., Π-contraction in the PTS world, is essential in λδ.
The reader should observe that β-contraction and υ-contraction act on different

abstractions. In this way, λδ “Version 3” avoids a critical pair that would not
be confluent. On the other hand, Aut−QE clearly supports “sort inclusion” (i.e.,
υ-contraction) on λ1 [vD94a]. As a result, the predicate λxS.P and its universal
quantification ∀xS.P have the same type ’prop’ in the u−GdA. To us, such a
position brings unnecessary complications into the logical framework.
Moreover, λe+1W0.U0 is a weak head normal form (WHNF), whereas λ0W0.U0

might be υ-reduced. Thus, we justify the forth premise of Figure 4(appl).
We wish to add that υ-contraction can include big universes into small ones,

so, eventually, restrictions might apply to the term W of Figure 4(υ) in order to
prove strong normalization and to avoid inconsistency. Because of Figure 4(bind),
such restrictions will influence the term λeW.T with 0 ≤ e < ∞, while the terms
λ∞W.T will not be influenced (i.e., layer 0 cannot be reached by iterated typing
from layer∞). In this respect, λδ “Version 3” accounts for the distinction between
“instantiation” and “abstraction” given in [dB91]. “Block openers” (i.e., unre-
stricted abstractions) [x:W] actually correspond to λ∞x W , whereas local variable
declarations (i.e., restricted abstractions) [x:W] correspond to λexW with 0 < e < ∞.
However, to the end of validating the u−GdA in a PTS, we saw in Section 2.5

that our static analyzer translates a “block opener” into either a λ1, or a λ2. Thus,
we must rely on the capability of the PTS to provide for big universes.
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The previous observations should convince the reader that λδ “Version 3” is
feasible for validating Aut−QE-based theories, as well as some PTS-based theories.
A key point to us is that λδ “Version 3” is a minimal-impact extension of λδ

“Version 2a” with constants, since it adds just one reduction rule to the framework.

3.2 An Overview of the Reduction and Type Machine

The key ingredient of mechanical validation in λδ “Version 3” is the Reduction
and Type Machine (RTM), an abstract machine of the “K” family [Kri07] that
computes the WHNF’s by “rt-reduction” [vD94b] for λδ (see [Gui09, Gui10a]).
In addition to ordinary reduction steps, mainly β-contractions, δ-expansions, and,

notably, υ-contractions, the RTM can take the next type-inference steps [Gui14].

—The step s: from a sort to the next sort in the type hierarchy.

—The step l: from a reference to a declaration λW , to its declared type W .

—The step e: from a type annotation©U.T to its declared type U .

—The step x: from a declaration λeW.T to λe−1W.T (not in λδ “Version 2”).

In this respect, and contrary to the usual approach, the RTM performs all the
reduction and all the type inference that is required by the validation procedure.
We motivate this position by noting that abstract machines can be very efficient.
Furthermore, the RTM is a “controlled” machine, in that it can stop on references

to defined variables or constants (which are not WHNF’s), and then it can carry
on its computation with a δ-expansion, when restarted by the calling controller.
In this way, the policy for managing δ-expansions, which is crucial for the vali-

dation of the “Grundlagen”, is entirely on the controller’s side (see Section 3.3).
The RTM maintains an integer parameter n that the caller can specify or not,

when the machine is started. Consequently, the RTM runs in two modes.

—The mode C (convertibility). When n is specified (typical values are: either
0, or 1), the RTM applies exactly n type-inference steps before stopping on a
WHNF. Note that the RTM operates on valid terms, so it does not meet dangling
references and either s-steps, l-steps, or x-steps always apply as necessary.
Moreover, on type annotations, the e-step (when applicable) is preferred to ǫ-
contraction (i.e., G,L ⊢©U.T → T ). This means that, in case of type inference,
we use declared types if we know them. The reader should note the type anno-
tation in the β-reductum of Figure 4(β), and in the first paragraph of Section 3.
In this mode, the “stop before δ-expansion” is enabled.

—The mode A (applicability). When n is not specified, the RTM disables s-steps,
e-steps, x-steps, and the “stop before δ-expansion”. In this situation, considering
the fourth premise of Figure 4(appl), the RTM started on T , stops on λe+1W0.U0.
It is important to stress that the term @V.T is not valid in a PTS, if this com-
putation requires more than one type-inference step. In this respect λδ features
an extended “applicability condition” agreeing with its multi-layer architecture.
The reader should note that uncontrolled s-steps and x-steps cause infinite com-
putations, while e-steps make the RTM miss the λe+1W0.U0 in some cases.
For instance, consider the term @x.f in the context ⋆.λxW.λf (©⋆.(λ

1W.U)).

To reach the λ1 after the l-step on f , the ǫ-step must be preferred to the e-step.
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These modes are related to the situations in which the RTM is involved. Either
two synchronized machines are started when a convertibility condition is checked,
or one machine is started when an applicability condition is checked. The reader
may refer to the conclusion of [Gui14], for a discussion on “applicability condition”.
As layer variables may occur in the λδ−GdA, the RTM operates in two scenarios.

(1) When layer variables are allowed, i.e., when validating the raw λδ−GdA, every
abstraction is a WHNF in mode C, so the RTM stops on a υ-redex. Thus, in
this case, the management of type inclusion is on the controller’s side, as it is
in the original validation algorithm implemented for Aut−QE [Zan94].
On the other hand, in mode A (i.e., when the RTM must not be synchronized),
υ-contraction is enabled. Yet, an abstraction with a variable layer is a WHNF.

(2) When layer variables are not allowed, i.e., when validating the proper λδ−GdA,
the RTM runs how it should and υ-contraction is enabled in mode C as well.

We stress that the RTM avoids ζ-contractions in the sense of [Gui14], which are
known as “delifting steps” following a well-established terminology.

3.3 An Overview of the Comparator

The comparator asserts the convertibility between a declared type U and the in-
ferred type of a term V . To this end, it starts a machine on U with n = 0, and a
machine on V with n = 1. This means that both machines run in mode C.
The conversion test occurs by levels, i.e., by repeated comparison of WHNF’s.
In particular, the comparison policy follows [Gui10a] and is given next.

(1) Two sorts are compared by their index. The arguments stacked by the two
machines are not considered since the RTM’s run on valid terms.

(2) Two references to local abstractions are compared by their level, i.e., not by
their depth, thus these references are not relocated. Information on the level of
each reference is provided by the respective RTM. In case of match, we assert
the convertibility of the arguments stacked by the two machines.

(3) Two references to global declarations are compared by URI. In case of match,
we assert the convertibility of the arguments stacked by the two machines.

(4) Two references to global definitions are compared by URI. In case of match,
we test the convertibility of the arguments stacked by the two machines and, if
this test fails, we δ-expand both definitions. In case of mismatch, we δ-expand
the “younger” definition according to an “age” system we shall explain.

(5) A reference to a definition compared to any other term, is δ-expanded.

(6) Two abstractions are compared by their layer and, in case of match, we assert
the convertibility of their arguments.

(7) When layer variables are allowed, and we are comparing an abstraction (coming
from V ) with a sort (coming from U), then we proceed by υ-reducing the
abstraction. Note that this clause makes the comparator not symmetrical.
In [Gui10a] we disable this clause when leaving the “spine” of V to avoid
inconsistency [Gui09]. However, by restricting υ-contraction to abstractions in
layer 0 (see Section 3.1), we should ensure consistency despite this workaround.
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It is a known fact that the “Grundlagen” can be validated in a reasonable amount
of time only if we limit δ-expansions during convertibility checks. In this respect, the
first slow constant seems to be t29"l-e-st-eq-landau-n-428" (which validates in
more than 12 minutes on a 3 GHz Intel processor). While the next slow constant
seems to be t2"l-e-st-eq-landau-n-430" (which takes more than 21 minutes).
To avoid these delays, our system implements “age-controlled” δ-expansions

[Zan94]. In particular, a progressively increasing natural number #p is assigned
to each constant p after its static analysis. Thus, constants become totally ordered.
The lines of the u−GdA appear in order of dependence, so a constant p1 processed

before a constant p2, i.e., satisfying #p1 <#p2, cannot depend on p2. This means
that when we compare a reference to p1 with a reference to p2, it is safe to δ-expand
just the reference to p2. In this respect, p2 is the “younger” constant of the two).
On the other hand, Matita uses “height-controlled” δ-expansions [ARST09], dif-

fering in that the same “height can be assigned to independent constants.

3.4 An Overview of the Validator

Indeed, the validator is the simpler component of our validation system. To some ex-
tent, it follows [Gui10a] but, remarkably, we replace the canonical type synthesizer
with a procedure to assert the validity relation of [Gui14], with the “applicability
rule” updated to Figure 4(appl) in order to comply with λδ “Version 3”.
As a result, the overall validation of the λδ−GdA becomes 1% faster on average

(the type synthesizer is still available, thus we can compare the two approaches).
Our point is that computing the canonical type of a term, is more expensive

than just asserting its existence. Contrary to the rules of canonical typing [Gui10a],
the rules of validity [Gui14] are relocation-free, i.e., they do not involve “lifting”,
following a well-established terminology. Thus, in the end, we achieve the long
awaited fully relocation-free validation process we advocated in [Gui09].
Looking again at Figure 4(appl), the validator asserts the applicability of T to V

as follows. Firstly, it starts a RTM, say m, on T with the parameter n unspecified,
which should stop on the abstraction λe+1W0.U0. Secondly, it calls the comparator
(Section 3.3) on W0 (as the declared type) and on V , using for W0 the machine m
in its current state. On the contrary, the machine for V has an initial state.

3.5 Dynamic Disambiguation of Unified Binders

The dynamic analysis of the “raw” λδ−GdA relies on the validation procedure we
discussed in the previous sections. When layer variables are allowed, this procedure
produces a sequence of constraints on such variables. They are of four kinds.

(1) The constraint φ − 1 = ψ is generated by the RTM on a “step x” from the
abstraction λφW.T to the abstraction λψW.T (see Section 3.2).

(2) The constraint φ = ψ is generated by the comparator matching two abstractions
λφW1.T1 and λψW2.T2 (see Clause (6) of Section 3.3).

(3) The constraint φ = 0 is generated by the RTM υ-reducing the abstraction
λφW.T as required by the comparator (see Clause (7) of Section 3.3).

(4) The constraint φ > 0 is generated by the RTM β-reducing the abstraction
λφW.T . Moreover, it is generated by the validator asserting the applicability
of a term T with functional structure λφW0.U0 (see Section 3.4).
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all"l"

−all:=p:’prop’

+all:=[x:sigma]<x>p:’prop’

imp"l-r"

−imp:=b:’prop’

+imp:=[x:a]<x>b:’prop’

ande2"l-r"

−b@[a1:and(a,b)]

−ande2:=<ande1(a,b,a1)>ande2"l"(a,b,a1):<ande1(a,b,a1)>b

+b@[a1:and(a,imp(a,b))]

+ande2:=<ande1(a,imp(a,b),a1)>ande2"l"(a,imp(a,b),a1):<ande1(a,imp(a,b),a1)>b

some"l"

−some:=not(non(p)):’prop’

+none:=all(sigma,non(p)):’prop’

+some:=not(none(p)):’prop’

∓non replaced by none in 5 “block openers” and in the constants:
th1"l-some", th3"l-some" (two times), th5"l-some", empty"l-e-st", t5"l-e-st-isset"
(two times), t13"l-e-st-eq-landau-n-327", and t38"l-e-st-eq-landau-n-327"

Marks: − (old text), + (new text), ∓ (multiple replacement)

Fig. 5. Static corrections to the u−GdA.

Whenever a constraint is issued, the system of known constraints is reduced by
repeated substitution. Thus, inconsistencies are discovered as soon as possible.
Notably, a consequence of static disambiguation (see Section 2.5), is that the

unified binders of the λδ−GdA can be disambiguated constant by constant.
In fact, all variables remaining in a constant p after static analysis are determined

after p is validated, i.e., without checking the subsequent references to p.
This means that layer variables can be reused after each constant is validated,

and that the system of constraints can be kept small during validation.
We would like to stress that both static disambiguation strategies must be used

in order to achieve this result (i.e., they disambiguate distinct sets of binders).

3.6 A Posteriori Static Corrections

As is stands in its original form, the u−GdA fails to validate in λδ and in a PTS,
since two constants require η-reduction on Π (i.e., the inferred type λ1xW.(@x.T )
must reduce to the expected type T ). They are t2"l-some" and th2"l-r-imp".
Nevertheless, these reductions can be avoided by following a suggestion due to van

Daalen and reported in [vB77], by which we apply a ∀-introduction to a predicate
symbol in two constants: all"l" and imp"l-r" (see Figure 5).
With these corrections, our dynamic analysis of the u−GdA reports 20 incon-

sistencies in its layer constraint system. Four of these are located in the constant
ande2"l-r" and state that “sort inclusion” is required on Π (i.e., υ-contraction
is required in λ1) four times. We highlight the problem in [Gui09], noting that
ande2"l-r" requires the “pure” type inference rule for function application [dB91],
corresponding to the “extended” applicability condition (see Section 3.2, mode A).
In [Gui14] we note that, sometimes, “extended” applicability reduces to the “re-

stricted” (i.e., PTS-like) applicability by applying λe+1-introductions.
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Strategy First effective use

Validation-based imp"l"

Position-based (on openers) imp"l"

Position-based (on constants) t5"l-some"

Degree-based t9"l-e-st-eq-landau-n-rt-rp-r-c-v9"

Fig. 6. Effective use of disambiguation strategies.

In the case of the u−GdA, we invoke imp"l-r" to apply a ∀-introduction to a
predicate b passed as a type and occurring four times (see Figure 5).
After the correction, just 12 inconsistencies remain. The first one is located in

the constant some"l", where the predicate non(p) is passed as a proposition.
We cannot apply a ∀-introduction to non(p) in its definition since some con-

stants use it a predicate indeed (they are: somei"l", t1"l-some", t2"l-some",
th1"l-some", t3"l-some", t4"l-some", and th2"l-some"). So, we introduce a
new constant none for the ∀-quantified non(p) and we replace non with none where
required (see Figure 5). Note that none is indeed the counterpart of some.
This correction solves all inconsistencies. In the end, we add 21 ∀-introductions to

the original u−GdA to obtain the λΠ−GdA. This result agrees with Brown’s state-
ment in [Bro11] that the u−GdA validates in a PTS just by formal η-expansion.

4. CONCLUSION AND FUTURE WORK

In [Gui09] we describe the λδ−GdA: a translation of the u−GdA into the formal
system λδ “Version 2”, experimentally equipped with “sort inclusion” to this end.
In this paper we take a step further by describing the λΠ−GdA: a translation of

the λδ−GdA into a PTS. The point at issue is assigning a “layer” to Automath’s
unified binders, i.e., distinguishing λ-abstractions from Π-abstractions.
For this purpose, we replace λδ “Version 2”, a calculus having a single binder,

with λδ “Version 3” outlined in Section 3.1: a system featuring infinite (actually,
ω + 1) binders, properly managing “sort inclusion” through υ-contraction.
In Section 2.5 and Section 3.5 we discuss the three strategies we implemented

for assigning such “layers” to binders. The reader should note that each strategy
is effective, in that it considers binders ignored by the other strategies. We show
in Figure 6 the first constant of the u−GdA on which each strategy is effective.
Our analysis reveals that some unified binders correspond to λ-abstractions and

to Π-abstractions at the same time. Brown has an “ad hoc” automated procedure
[Bro11] to solve this situation by formally η-expanding these inconsistent binders.
On the contrary, our approach is to apply these expansions (∀-introductions,

from the logical standpoint) by hand on the u−GdA as we show in Section 3.6.
Helena, our implemented processor for λδ “Version 3”, validates the corrected

u−GdA by operating the amount of β-contractions and of δ-expansions shown in
Figure 7. The δ-expansions on variables come from the β-reductum of Figure 4(β).
On our hardware, a 3 GHz Intel processor (1.3 MHz bus, 12 MB cache) with

10K rpm (3 Gb/s SATA) hard drives, we measured the execution times of Figure 8
concerning Helena (processing the u−GdA), and Coq (processing the λΠ−GdA).
As of now, the λΠ−GdA is a user-level script consisting of a flat sequence of lines,

each declaring or defining a constant of the u−GdA in the raw syntax of a PTS.
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Step Amount

β-contraction 907865

δ-expansion (on variables) 451799

δ-expansion (on constants) 418357

Fig. 7. Main reduction steps of the RTM.

Input System Execution (seconds) Task

u−GdA Helena 0.8.2 01.02 to 01.05 disambiguation, validation in λδ

λΠ−GdA Coq 8.4.3 (no VM) 25.80 to 26.16 validation in λC

Coq 8.4.3 (with VM) run was halted after 60 minutes
Matita 0.99.2 work in progress validation in λC

All systems are implemented in the Objective Caml programming language

Fig. 8. Time of one run (min. and max. on 31 runs).

In order to be usable as a background for formalized mathematics, this script
must be improved by making the original structure of the “Grundlagen” explicit.
In particular, we would like to see definitions and propositions typeset with

domain-specific mathematical notation. Proofs should appear in a domain-specific
language as well, and the whole matter should be organized in different files re-
specting the system of chapters and sections that we see in [Lan65].
Such a step will require to operate manually of the λδ−GdA with the help of a

dedicated technology supervising crucial aspects of the work. For instance, defining
and inserting notations, or applying semantics-preserving changes.
As to improving the proofs, we are in favor of using our “procedural reconstruc-

tion” [Gui10b], a technology we implemented for a former version of Matita.
The corrected u−GdA, the λδ−GdA and the λΠ−GdA, as well as our processor

for λδ “Version 3”, are available at λδ Web site: <http://lambdadelta.info/>.
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