(* Copyright (C) 2004, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://helm.cs.unibo.it/ *) (* $Id$ *) open GrafiteAst let tactical_terminator = "" let tactic_terminator = tactical_terminator let command_terminator = tactical_terminator let pp_idents idents = let map = function Some s -> s | None -> "_" in "(" ^ String.concat " " (List.map map idents) ^ ")" let pp_hyps idents = String.concat " " idents let pp_reduction_kind ~term_pp = function | `Normalize -> "normalize" | `Reduce -> "reduce" | `Simpl -> "simplify" | `Unfold (Some t) -> "unfold " ^ term_pp t | `Unfold None -> "unfold" | `Whd -> "whd" let pp_tactic_pattern ~map_unicode_to_tex ~term_pp ~lazy_term_pp (what, hyp, goal) = if what = None && hyp = [] && goal = None then "" else let what_text = match what with | None -> "" | Some t -> Printf.sprintf "in match (%s) " (lazy_term_pp t) in let hyp_text = String.concat " " (List.map (fun (name, p) -> Printf.sprintf "%s:(%s)" name (term_pp p)) hyp) in let goal_text = match goal with | None -> "" | Some t -> let vdash = if map_unicode_to_tex then "\\vdash" else "⊢" in Printf.sprintf "%s (%s)" vdash (term_pp t) in Printf.sprintf "%sin %s%s" what_text hyp_text goal_text let pp_intros_specs s = function | None, [] -> "" | Some num, [] -> Printf.sprintf " %s%i" s num | None, idents -> Printf.sprintf " %s%s" s (pp_idents idents) | Some num, idents -> Printf.sprintf " %s%i %s" s num (pp_idents idents) let pp_terms ~term_pp terms = String.concat ", " (List.map term_pp terms) let opt_string_pp = function | None -> "" | Some what -> what ^ " " let pp_auto_params ~term_pp (univ, params) = String.concat " " (List.map (fun (k,v) -> if v <> "" then k ^ "=" ^ v else k) params) ^ match univ with | None -> "" | Some l -> (if params <> [] then " " else "") ^ "by " ^ String.concat " " (List.map term_pp l) ;; let pp_just ~term_pp = function `Term term -> "exact " ^ term_pp term | `Auto params -> pp_auto_params ~term_pp params ;; let rec pp_ntactic ~map_unicode_to_tex = let term_pp = CicNotationPp.pp_term in let lazy_term_pp = fun _ -> assert false in let pp_tactic_pattern = pp_tactic_pattern ~map_unicode_to_tex ~lazy_term_pp ~term_pp in function | NApply (_,t) -> "napply " ^ CicNotationPp.pp_term t | NSmartApply (_,t) -> "fixme" | NAuto (_,(None,flgs)) -> "nautobatch" ^ String.concat " " (List.map (fun a,b -> a ^ "=" ^ b) flgs) | NAuto (_,(Some l,flgs)) -> "nautobatch" ^ " by " ^ (String.concat "," (List.map CicNotationPp.pp_term l)) ^ String.concat " " (List.map (fun a,b -> a ^ "=" ^ b) flgs) | NCases (_,what,where) -> "ncases " ^ CicNotationPp.pp_term what ^ assert false ^ " " ^ assert false | NConstructor (_,None,l) -> "@ " ^ String.concat " " (List.map CicNotationPp.pp_term l) | NConstructor (_,Some x,l) -> "@" ^ string_of_int x ^ " " ^ String.concat " " (List.map CicNotationPp.pp_term l) | NCase1 (_,n) -> "*" ^ n ^ ":" | NChange (_,what,wwhat) -> "nchange " ^ assert false ^ " with " ^ CicNotationPp.pp_term wwhat | NCut (_,t) -> "ncut " ^ CicNotationPp.pp_term t (*| NDiscriminate (_,t) -> "ndiscriminate " ^ CicNotationPp.pp_term t | NSubst (_,t) -> "nsubst " ^ CicNotationPp.pp_term t *) | NDestruct (_,dom,skip) -> "ndestruct ..." | NElim (_,what,where) -> "nelim " ^ CicNotationPp.pp_term what ^ assert false ^ " " ^ assert false | NId _ -> "nid" | NIntro (_,n) -> "#" ^ n | NInversion (_,what,where) -> "ninversion " ^ CicNotationPp.pp_term what ^ assert false ^ " " ^ assert false | NLApply (_,t) -> "lapply " ^ CicNotationPp.pp_term t | NRewrite (_,dir,n,where) -> "nrewrite " ^ (match dir with `LeftToRight -> ">" | `RightToLeft -> "<") ^ " " ^ CicNotationPp.pp_term n ^ " " ^ pp_tactic_pattern where | NReduce _ | NGeneralize _ | NLetIn _ | NAssert _ -> "TO BE IMPLEMENTED" | NDot _ -> "##." | NSemicolon _ -> "##;" | NBranch _ -> "##[" | NShift _ -> "##|" | NPos (_, l) -> "##" ^String.concat "," (List.map string_of_int l)^ ":" | NPosbyname (_, s) -> "##" ^ s ^ ":" | NWildcard _ -> "##*:" | NMerge _ -> "##]" | NFocus (_,l) -> Printf.sprintf "##focus %s" (String.concat " " (List.map string_of_int l)) | NUnfocus _ -> "##unfocus" | NSkip _ -> "##skip" | NTry (_,tac) -> "ntry " ^ pp_ntactic ~map_unicode_to_tex tac | NAssumption _ -> "nassumption" | NBlock (_,l) -> "(" ^ String.concat " " (List.map (pp_ntactic ~map_unicode_to_tex) l)^ ")" | NRepeat (_,t) -> "nrepeat " ^ pp_ntactic ~map_unicode_to_tex t ;; let rec pp_tactic ~map_unicode_to_tex ~term_pp ~lazy_term_pp = let pp_terms = pp_terms ~term_pp in let pp_tactics = pp_tactics ~map_unicode_to_tex ~term_pp ~lazy_term_pp in let pp_reduction_kind = pp_reduction_kind ~term_pp in let pp_tactic_pattern = pp_tactic_pattern ~map_unicode_to_tex ~lazy_term_pp ~term_pp in let rec pp_tactic = function (* Higher order tactics *) | Do (_, count, tac) -> Printf.sprintf "do %d %s" count (pp_tactic tac) | Repeat (_, tac) -> "repeat " ^ pp_tactic tac | Seq (_, tacs) -> pp_tactics ~sep:"; " tacs | Then (_, tac, tacs) -> Printf.sprintf "%s; [%s]" (pp_tactic tac) (pp_tactics ~sep:" | " tacs) | First (_, tacs) -> Printf.sprintf "tries [%s]" (pp_tactics ~sep:" | " tacs) | Try (_, tac) -> "try " ^ pp_tactic tac | Solve (_, tac) -> Printf.sprintf "solve [%s]" (pp_tactics ~sep:" | " tac) | Progress (_, tac) -> "progress " ^ pp_tactic tac (* First order tactics *) | Absurd (_, term) -> "absurd" ^ term_pp term | Apply (_, term) -> "apply " ^ term_pp term | ApplyRule (_, term) -> "apply rule " ^ term_pp term | ApplyP (_, term) -> "applyP " ^ term_pp term | ApplyS (_, term, params) -> "applyS " ^ term_pp term ^ pp_auto_params ~term_pp params | AutoBatch (_,params) -> "autobatch " ^ pp_auto_params ~term_pp params | Assumption _ -> "assumption" | Cases (_, term, pattern, specs) -> Printf.sprintf "cases %s %s%s" (term_pp term) (pp_tactic_pattern pattern) (pp_intros_specs "names " specs) | Change (_, where, with_what) -> Printf.sprintf "change %s with %s" (pp_tactic_pattern where) (lazy_term_pp with_what) | Clear (_,ids) -> Printf.sprintf "clear %s" (pp_hyps ids) | ClearBody (_,id) -> Printf.sprintf "clearbody %s" (pp_hyps [id]) | Constructor (_,n) -> "constructor " ^ string_of_int n | Compose (_,t1, t2, times, intro_specs) -> Printf.sprintf "compose %s%s %s%s" (if times > 0 then string_of_int times ^ " " else "") (term_pp t1) (match t2 with None -> "" | Some t2 -> "with "^term_pp t2) (pp_intros_specs " as " intro_specs) | Contradiction _ -> "contradiction" | Cut (_, ident, term) -> "cut " ^ term_pp term ^ (match ident with None -> "" | Some id -> " as " ^ id) | Decompose (_, names) -> Printf.sprintf "decompose%s" (pp_intros_specs "names " (None, names)) | Demodulate (_, params) -> "demodulate " ^ pp_auto_params ~term_pp params | Destruct (_, None) -> "destruct" | Destruct (_, Some terms) -> "destruct " ^ pp_terms terms | Elim (_, what, using, pattern, specs) -> Printf.sprintf "elim %s%s %s%s" (term_pp what) (match using with None -> "" | Some term -> " using " ^ term_pp term) (pp_tactic_pattern pattern) (pp_intros_specs "names " specs) | ElimType (_, term, using, specs) -> Printf.sprintf "elim type %s%s%s" (term_pp term) (match using with None -> "" | Some term -> " using " ^ term_pp term) (pp_intros_specs "names " specs) | Exact (_, term) -> "exact " ^ term_pp term | Exists _ -> "exists" | Fold (_, kind, term, pattern) -> Printf.sprintf "fold %s %s %s" (pp_reduction_kind kind) (lazy_term_pp term) (pp_tactic_pattern pattern) | FwdSimpl (_, hyp, names) -> Printf.sprintf "fwd %s%s" hyp (pp_intros_specs "names " (None, names)) | Generalize (_, pattern, ident) -> Printf.sprintf "generalize %s%s" (pp_tactic_pattern pattern) (match ident with None -> "" | Some id -> " as " ^ id) | Fail _ -> "fail" | Fourier _ -> "fourier" | IdTac _ -> "id" | Intros (_, specs) -> Printf.sprintf "intros%s" (pp_intros_specs "" specs) | Inversion (_, term) -> "inversion " ^ term_pp term | LApply (_, linear, level_opt, terms, term, ident_opt) -> Printf.sprintf "lapply %s%s%s%s%s" (if linear then " linear " else "") (match level_opt with None -> "" | Some i -> " depth = " ^ string_of_int i ^ " ") (term_pp term) (match terms with [] -> "" | _ -> " to " ^ pp_terms terms) (match ident_opt with None -> "" | Some ident -> " as " ^ ident) | Left _ -> "left" | LetIn (_, term, ident) -> Printf.sprintf "letin %s \\def %s" ident (term_pp term) | Reduce (_, kind, pat) -> Printf.sprintf "%s %s" (pp_reduction_kind kind) (pp_tactic_pattern pat) | Reflexivity _ -> "reflexivity" | Replace (_, pattern, t) -> Printf.sprintf "replace %s with %s" (pp_tactic_pattern pattern) (lazy_term_pp t) | Rewrite (_, pos, t, pattern, names) -> Printf.sprintf "rewrite %s %s %s%s" (if pos = `LeftToRight then ">" else "<") (term_pp t) (pp_tactic_pattern pattern) (if names = [] then "" else " as " ^ pp_idents names) | Right _ -> "right" | Ring _ -> "ring" | Split _ -> "split" | Symmetry _ -> "symmetry" | Transitivity (_, term) -> "transitivity " ^ term_pp term (* Tattiche Aggiunte *) | Assume (_, ident , term) -> "assume" ^ ident ^ ":" ^ term_pp term | Suppose (_, term, ident,term1) -> "suppose" ^ term_pp term ^ "(" ^ ident ^ ")" ^ (match term1 with None -> " " | Some term1 -> term_pp term1) | Bydone (_, just) -> pp_just ~term_pp just ^ "done" | By_just_we_proved (_, just, term1, ident, term2) -> pp_just ~term_pp just ^ "we proved" ^ term_pp term1 ^ (match ident with None -> "" | Some ident -> "(" ^ident^ ")") ^ (match term2 with None -> " " | Some term2 -> term_pp term2) | We_need_to_prove (_, term, ident, term1) -> "we need to prove" ^ term_pp term ^ (match ident with None -> "" | Some ident -> "(" ^ ident ^ ")") ^ (match term1 with None -> " " | Some term1 -> term_pp term1) | We_proceed_by_cases_on (_, term, term1) -> "we proceed by cases on" ^ term_pp term ^ "to prove" ^ term_pp term1 | We_proceed_by_induction_on (_, term, term1) -> "we proceed by induction on" ^ term_pp term ^ "to prove" ^ term_pp term1 | Byinduction (_, term, ident) -> "by induction hypothesis we know" ^ term_pp term ^ "(" ^ ident ^ ")" | Thesisbecomes (_, term) -> "the thesis becomes " ^ term_pp term | ExistsElim (_, just, ident, term, ident1, term1) -> pp_just ~term_pp just ^ "let " ^ ident ^ ":" ^ term_pp term ^ "such that " ^ lazy_term_pp term1 ^ "(" ^ ident1 ^ ")" | AndElim (_, just, ident1, term1, ident2, term2) -> pp_just ~term_pp just ^ "we have " ^ term_pp term1 ^ " (" ^ ident1 ^ ") " ^ "and " ^ term_pp term2 ^ " (" ^ ident2 ^ ")" | RewritingStep (_, term, term1, term2, cont) -> (match term with | None -> " " | Some (None,term) -> "conclude " ^ term_pp term | Some (Some name,term) -> "obtain (" ^ name ^ ") " ^ term_pp term) ^ "=" ^ term_pp term1 ^ (match term2 with | `Auto params -> pp_auto_params ~term_pp params | `Term term2 -> " exact " ^ term_pp term2 | `Proof -> " proof" | `SolveWith term -> " using " ^ term_pp term) ^ (if cont then " done" else "") | Case (_, id, args) -> "case" ^ id ^ String.concat " " (List.map (function (id,term) -> "(" ^ id ^ ": " ^ term_pp term ^ ")") args) in pp_tactic and pp_tactics ~map_unicode_to_tex ~term_pp ~lazy_term_pp ~sep tacs = String.concat sep (List.map (pp_tactic ~map_unicode_to_tex ~lazy_term_pp ~term_pp) tacs) let pp_search_kind = function | `Locate -> "locate" | `Hint -> "hint" | `Match -> "match" | `Elim -> "elim" | `Instance -> "instance" let pp_arg ~term_pp arg = let s = term_pp arg in if s = "" || (s.[0] = '(' && s.[String.length s - 1] = ')') then (* _nice_ heuristic *) s else "(" ^ s ^ ")" let pp_nmacro = function | NCheck (_, term) -> Printf.sprintf "ncheck %s" (CicNotationPp.pp_term term) | Screenshot (_, name) -> Printf.sprintf "screenshot \"%s\"" name ;; let pp_macro ~term_pp ~lazy_term_pp = let term_pp = pp_arg ~term_pp in let flavour_pp = function | `Definition -> "definition" | `Fact -> "fact" | `Lemma -> "lemma" | `Remark -> "remark" | `Theorem -> "theorem" | `Variant -> "variant" | `Axiom -> "axiom" | `MutualDefinition -> assert false in let pp_inline_params l = let pp_param = function | IPPrefix prefix -> "prefix = \"" ^ prefix ^ "\"" | IPAs flavour -> flavour_pp flavour | IPCoercions -> "coercions" | IPDebug debug -> "debug = " ^ string_of_int debug | IPProcedural -> "procedural" | IPNoDefaults -> "nodefaults" | IPDepth depth -> "depth = " ^ string_of_int depth | IPLevel level -> "level = " ^ string_of_int level | IPComments -> "comments" | IPCR -> "cr" in let s = String.concat " " (List.map pp_param l) in if s = "" then s else " " ^ s in let pp_reduction_kind = pp_reduction_kind ~term_pp:lazy_term_pp in function (* real macros *) | Eval (_, kind, term) -> Printf.sprintf "eval %s on %s" (pp_reduction_kind kind) (term_pp term) | Check (_, term) -> Printf.sprintf "check %s" (term_pp term) | Hint (_, true) -> "hint rewrite" | Hint (_, false) -> "hint" | AutoInteractive (_,params) -> "auto " ^ pp_auto_params ~term_pp params | Inline (_, suri, params) -> Printf.sprintf "inline \"%s\"%s" suri (pp_inline_params params) let pp_associativity = function | Gramext.LeftA -> "left associative" | Gramext.RightA -> "right associative" | Gramext.NonA -> "non associative" let pp_precedence i = Printf.sprintf "with precedence %d" i let pp_default what uris = Printf.sprintf "default \"%s\" %s" what (String.concat " " (List.map UriManager.string_of_uri uris)) let pp_coercion ~term_pp t do_composites arity saturations= Printf.sprintf "coercion %s %d %d %s" (term_pp t) arity saturations (if do_composites then "" else "nocomposites") let pp_ncommand ~obj_pp = function | UnificationHint (_,t, n) -> "unification hint " ^ string_of_int n ^ " " ^ CicNotationPp.pp_term t | NDiscriminator (_,_) | NInverter (_,_,_,_,_) | NUnivConstraint (_) -> "not supported" | NCoercion (_) -> "not supported" | NObj (_,obj) -> obj_pp obj | NQed (_) -> "nqed" | NCopy (_,name,uri,map) -> "copy " ^ name ^ " from " ^ NUri.string_of_uri uri ^ " with " ^ String.concat " and " (List.map (fun (a,b) -> NUri.string_of_uri a ^ " ↦ " ^ NUri.string_of_uri b) map) ;; let pp_command ~term_pp ~obj_pp = function | Index (_,_,uri) -> "Indexing " ^ UriManager.string_of_uri uri | Select (_,uri) -> "Selecting " ^ UriManager.string_of_uri uri | Coercion (_, t, do_composites, i, j) -> pp_coercion ~term_pp t do_composites i j | PreferCoercion (_,t) -> "prefer coercion " ^ term_pp t | Inverter (_,n,ty,params) -> "inverter " ^ n ^ " for " ^ term_pp ty ^ " " ^ List.fold_left (fun acc x -> acc ^ (match x with true -> "%" | _ -> "?")) "" params | Default (_,what,uris) -> pp_default what uris | Drop _ -> "drop" | Include (_,true,`OldAndNew,path) -> "include \"" ^ path ^ "\"" | Include (_,false,`OldAndNew,path) -> "include source \"" ^ path ^ "\"" | Include (_,_,`New,path) -> "RECURSIVELY INCLUDING " ^ path | Obj (_,obj) -> obj_pp obj | Qed _ -> "qed" | Relation (_,id,a,aeq,refl,sym,trans) -> "relation " ^ term_pp aeq ^ " on " ^ term_pp a ^ (match refl with Some r -> " reflexivity proved by " ^ term_pp r | None -> "") ^ (match sym with Some r -> " symmetry proved by " ^ term_pp r | None -> "") ^ (match trans with Some r -> " transitivity proved by " ^ term_pp r | None -> "") | Print (_,s) -> "print " ^ s | Set (_, name, value) -> Printf.sprintf "set \"%s\" \"%s\"" name value | Pump (_) -> "not supported" let pp_punctuation_tactical = function | Dot _ -> "." | Semicolon _ -> ";" | Branch _ -> "[" | Shift _ -> "|" | Pos (_, i) -> Printf.sprintf "%s:" (String.concat "," (List.map string_of_int i)) | Wildcard _ -> "*:" | Merge _ -> "]" let pp_non_punctuation_tactical = function | Focus (_, goals) -> Printf.sprintf "focus %s" (String.concat " " (List.map string_of_int goals)) | Unfocus _ -> "unfocus" | Skip _ -> "skip" let pp_executable ~map_unicode_to_tex ~term_pp ~lazy_term_pp ~obj_pp = function | NMacro (_, macro) -> pp_nmacro macro ^ "." | Macro (_, macro) -> pp_macro ~term_pp ~lazy_term_pp macro ^ "." | Tactic (_, Some tac, punct) -> pp_tactic ~map_unicode_to_tex ~term_pp ~lazy_term_pp tac ^ pp_punctuation_tactical punct | Tactic (_, None, punct) -> pp_punctuation_tactical punct | NTactic (_,tacl) -> String.concat " " (List.map (pp_ntactic ~map_unicode_to_tex) tacl) | NonPunctuationTactical (_, tac, punct) -> pp_non_punctuation_tactical tac ^ pp_punctuation_tactical punct | Command (_, cmd) -> pp_command ~term_pp ~obj_pp cmd ^ "." | NCommand (_, cmd) -> let obj_pp = Obj.magic obj_pp in pp_ncommand ~obj_pp cmd ^ "." let pp_comment ~map_unicode_to_tex ~term_pp ~lazy_term_pp ~obj_pp = function | Note (_,"") -> Printf.sprintf "\n" | Note (_,str) -> Printf.sprintf "\n(* %s *)" str | Code (_,code) -> Printf.sprintf "\n(** %s. **)" (pp_executable ~map_unicode_to_tex ~term_pp ~lazy_term_pp ~obj_pp code) let pp_statement ~term_pp ~lazy_term_pp ~obj_pp = function | Executable (_, ex) -> pp_executable ~lazy_term_pp ~term_pp ~obj_pp ex | Comment (_, c) -> pp_comment ~term_pp ~lazy_term_pp ~obj_pp c