(* Copyright (C) 2005, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://helm.cs.unibo.it/ *) (* $Id$ *) module N = NotationPt module G = GrafiteAst let exc_located_wrapper f = try f () with | Ploc.Exc (_, End_of_file) -> raise End_of_file | Ploc.Exc (floc, Stream.Error msg) -> raise (HExtlib.Localized (floc,CicNotationParser.Parse_error msg)) | Ploc.Exc (floc, HExtlib.Localized(_,exn)) -> raise (HExtlib.Localized (floc,CicNotationParser.Parse_error (Printexc.to_string exn))) | Ploc.Exc (floc, exn) -> raise (HExtlib.Localized (floc,CicNotationParser.Parse_error (Printexc.to_string exn))) type parsable = Grammar.parsable * Ulexing.lexbuf let parsable_statement status buf = let grammar = CicNotationParser.level2_ast_grammar status in Grammar.parsable grammar (Obj.magic buf), buf let parse_statement grafite_parser parsable = exc_located_wrapper (fun () -> (Grammar.Entry.parse_parsable grafite_parser (fst parsable))) let strm_of_parsable (_,buf) = buf let add_raw_attribute ~text t = N.AttributedTerm (`Raw text, t) let default_associativity = Gramext.NonA let mk_rec_corec ind_kind defs loc = let name,ty = match defs with | (params,(N.Ident (name, None), ty),_,_) :: _ -> let ty = match ty with Some ty -> ty | None -> N.Implicit `JustOne in let ty = List.fold_right (fun var ty -> N.Binder (`Pi,var,ty) ) params ty in name,ty | _ -> assert false in let body = N.Ident (name,None) in (loc, N.Theorem(`Definition, name, ty, Some (N.LetRec (ind_kind, defs, body)), `Regular)) let nmk_rec_corec ind_kind defs loc index = let loc,t = mk_rec_corec ind_kind defs loc in G.NObj (loc,t,index) (* let nnon_punct_of_punct = function | G.Skip loc -> G.NSkip loc | G.Unfocus loc -> G.NUnfocus loc | G.Focus (loc,l) -> G.NFocus (loc,l) ;; *) type by_continuation = BYC_done | BYC_weproved of N.term * string option * N.term option | BYC_letsuchthat of string * N.term * string * N.term | BYC_wehaveand of string * N.term * string * N.term let mk_parser statement lstatus = (* let grammar = CicNotationParser.level2_ast_grammar lstatus in *) let term = CicNotationParser.term lstatus in let let_defs = CicNotationParser.let_defs lstatus in let let_codefs = CicNotationParser.let_codefs lstatus in let protected_binder_vars = CicNotationParser.protected_binder_vars lstatus in (* {{{ parser initialization *) EXTEND GLOBAL: term statement; constructor: [ [ name = IDENT; SYMBOL ":"; typ = term -> (name, typ) ] ]; tactic_term: [ [ t = term LEVEL "90" -> t ] ]; ident_list1: [ [ LPAREN; idents = LIST1 IDENT; RPAREN -> idents ] ]; nreduction_kind: [ [ IDENT "normalize" ; delta = OPT [ IDENT "nodelta" -> () ] -> let delta = match delta with None -> true | _ -> false in `Normalize delta | IDENT "whd" ; delta = OPT [ IDENT "nodelta" -> () ] -> let delta = match delta with None -> true | _ -> false in `Whd delta] ]; sequent_pattern_spec: [ [ hyp_paths = LIST0 [ id = IDENT ; path = OPT [SYMBOL ":" ; path = tactic_term -> path ] -> (id,match path with Some p -> p | None -> N.UserInput) ]; goal_path = OPT [ SYMBOL <:unicode>; term = tactic_term -> term ] -> let goal_path = match goal_path, hyp_paths with None, [] -> Some N.UserInput | None, _::_ -> None | Some goal_path, _ -> Some goal_path in hyp_paths,goal_path ] ]; pattern_spec: [ [ res = OPT [ "in" ; wanted_and_sps = [ "match" ; wanted = tactic_term ; sps = OPT [ "in"; sps = sequent_pattern_spec -> sps ] -> Some wanted,sps | sps = sequent_pattern_spec -> None,Some sps ]; SYMBOL ";" -> let wanted,hyp_paths,goal_path = match wanted_and_sps with wanted,None -> wanted, [], Some N.UserInput | wanted,Some (hyp_paths,goal_path) -> wanted,hyp_paths,goal_path in wanted, hyp_paths, goal_path ] -> match res with None -> None,[],Some N.UserInput | Some ps -> ps] ]; inverter_param_list: [ [ params = tactic_term -> let deannotate = function | N.AttributedTerm (_,t) | t -> t in match deannotate params with | N.Implicit _ -> [false] | N.UserInput -> [true] | N.Appl l -> List.map (fun x -> match deannotate x with | N.Implicit _ -> false | N.UserInput -> true | _ -> raise (Invalid_argument "malformed target parameter list 1")) l | _ -> (*CSC: new NCicPp.status is the best I can do here without changing the result type *) raise (Invalid_argument ("malformed target parameter list 2\n" ^ NotationPp.pp_term (new NCicPp.status) params)) ] ]; direction: [ [ SYMBOL ">" -> `LeftToRight | SYMBOL "<" -> `RightToLeft ] ]; int: [ [ num = NUMBER -> int_of_string num ] ]; ntactic: [ [ SYMBOL "@"; t = tactic_term -> G.NTactic(loc,[G.NApply (loc, t)]) | IDENT "applyS"; t = tactic_term -> G.NTactic(loc,[G.NSmartApply(loc, t)]) | IDENT "assert"; seqs = LIST0 [ hyps = LIST0 [ id = IDENT ; SYMBOL ":" ; ty = tactic_term -> id,`Decl ty | id = IDENT ; SYMBOL ":" ; ty = tactic_term ; SYMBOL <:unicode> ; bo = tactic_term -> id,`Def (bo,ty)]; SYMBOL <:unicode>; concl = tactic_term -> (List.rev hyps,concl) ] -> G.NTactic(loc,[G.NAssert (loc, seqs)]) | SYMBOL "/"; num = OPT NUMBER ; just_and_params = auto_params; SYMBOL "/" -> let just,params = just_and_params in let depth = match num with Some n -> n | None -> "1" in (match just with | None -> G.NTactic(loc, [G.NAuto(loc,(None,["depth",depth]@params))]) | Some (`Univ univ) -> G.NTactic(loc, [G.NAuto(loc,(Some univ,["depth",depth]@params))]) | Some `Trace -> G.NMacro(loc, G.NAutoInteractive (loc, (None,["depth",depth]@params)))) | SYMBOL "#"; SYMBOL "#" -> G.NMacro (loc, G.NIntroGuess loc) | IDENT "check"; t = tactic_term -> G.NMacro(loc,G.NCheck (loc,t)) | IDENT "screenshot"; fname = QSTRING -> G.NMacro(loc,G.Screenshot (loc, fname)) | IDENT "cases"; what = tactic_term ; where = pattern_spec -> G.NTactic(loc,[G.NCases (loc, what, where)]) | IDENT "change"; "with"; with_what = tactic_term; what = pattern_spec -> G.NTactic(loc,[G.NChange (loc, what, with_what)]) | SYMBOL "-"; id = IDENT -> G.NTactic(loc,[G.NClear (loc, [id])]) | PLACEHOLDER; num = OPT NUMBER; l = OPT [ SYMBOL "{"; l = LIST1 tactic_term; SYMBOL "}" -> l ] -> G.NTactic(loc,[G.NConstructor (loc, (match num with None -> None | Some x -> Some (int_of_string x)),match l with None -> [] | Some l -> l)]) | IDENT "cut"; t = tactic_term -> G.NTactic(loc,[G.NCut (loc, t)]) | IDENT "destruct"; just = OPT [ dom = ident_list1 -> dom ]; exclude = OPT [ IDENT "skip"; skip = ident_list1 -> skip ] -> let exclude' = match exclude with None -> [] | Some l -> l in G.NTactic(loc,[G.NDestruct (loc,just,exclude')]) | IDENT "elim"; what = tactic_term ; where = pattern_spec -> G.NTactic(loc,[G.NElim (loc, what, where)]) | IDENT "generalize"; p=pattern_spec -> G.NTactic(loc,[G.NGeneralize (loc, p)]) | IDENT "inversion"; what = tactic_term ; where = pattern_spec -> G.NTactic(loc,[G.NInversion (loc, what, where)]) | IDENT "lapply"; t = tactic_term -> G.NTactic(loc,[G.NLApply (loc, t)]) | IDENT "letin"; name = IDENT ; SYMBOL <:unicode> ; t = tactic_term; where = pattern_spec -> G.NTactic(loc,[G.NLetIn (loc,where,t,name)]) | kind = nreduction_kind; p = pattern_spec -> G.NTactic(loc,[G.NReduce (loc, kind, p)]) | dir = direction; what = tactic_term ; where = pattern_spec -> G.NTactic(loc,[G.NRewrite (loc, dir, what, where)]) | IDENT "try"; tac = SELF -> let tac = match tac with G.NTactic(_,[t]) -> t | _ -> assert false in G.NTactic(loc,[ G.NTry (loc,tac)]) | IDENT "repeat"; tac = SELF -> let tac = match tac with G.NTactic(_,[t]) -> t | _ -> assert false in G.NTactic(loc,[ G.NRepeat (loc,tac)]) | LPAREN; l = LIST1 SELF; RPAREN -> let l = List.flatten (List.map (function G.NTactic(_,t) -> t | _ -> assert false) l) in G.NTactic(loc,[G.NBlock (loc,l)]) | IDENT "assumption" -> G.NTactic(loc,[ G.NAssumption loc]) | SYMBOL "#"; ns=IDENT -> G.NTactic(loc,[ G.NIntros (loc,[ns])]) | SYMBOL "#"; SYMBOL "_" -> G.NTactic(loc,[ G.NIntro (loc,"_")]) | SYMBOL "*" -> G.NTactic(loc,[ G.NCase1 (loc,"_")]) | SYMBOL "*"; "as"; n=IDENT -> G.NTactic(loc,[ G.NCase1 (loc,n)]) ] ]; auto_fixed_param: [ [ IDENT "demod" | IDENT "fast_paramod" | IDENT "paramod" | IDENT "width" | IDENT "size" | IDENT "nohyps" ] ]; auto_params: [ [ params = LIST0 [ i = auto_fixed_param -> i,"" | i = auto_fixed_param ; SYMBOL "="; v = [ v = int -> string_of_int v | v = IDENT -> v ] -> i,v ]; just = OPT [ IDENT "by"; by = [ univ = LIST0 tactic_term SEP SYMBOL "," -> `Univ univ | SYMBOL "_" -> `Trace ] -> by ] -> just,params ] ]; (* MATITA 1.0 by_continuation: [ [ WEPROVED; ty = tactic_term ; LPAREN ; id = IDENT ; RPAREN ; t1 = OPT [IDENT "that" ; IDENT "is" ; IDENT "equivalent" ; "to" ; t2 = tactic_term -> t2] -> BYC_weproved (ty,Some id,t1) | WEPROVED; ty = tactic_term ; t1 = OPT [IDENT "that" ; IDENT "is" ; IDENT "equivalent" ; "to" ; t2 = tactic_term -> t2] ; "done" -> BYC_weproved (ty,None,t1) | "done" -> BYC_done | "let" ; id1 = IDENT ; SYMBOL ":" ; t1 = tactic_term ; IDENT "such" ; IDENT "that" ; t2=tactic_term ; LPAREN ; id2 = IDENT ; RPAREN -> BYC_letsuchthat (id1,t1,id2,t2) | WEHAVE; t1=tactic_term ; LPAREN ; id1=IDENT ; RPAREN ;"and" ; t2=tactic_term ; LPAREN ; id2=IDENT ; RPAREN -> BYC_wehaveand (id1,t1,id2,t2) ] ]; *) (* MATITA 1.0 rewriting_step_continuation : [ [ "done" -> true | -> false ] ]; *) (* MATITA 1.0 atomic_tactical: [ "sequence" LEFTA [ t1 = SELF; SYMBOL ";"; t2 = SELF -> let ts = match t1 with | G.Seq (_, l) -> l @ [ t2 ] | _ -> [ t1; t2 ] in G.Seq (loc, ts) ] | "then" NONA [ tac = SELF; SYMBOL ";"; SYMBOL "["; tacs = LIST0 SELF SEP SYMBOL "|"; SYMBOL "]"-> (G.Then (loc, tac, tacs)) ] | "loops" RIGHTA [ IDENT "do"; count = int; tac = SELF -> G.Do (loc, count, tac) | IDENT "repeat"; tac = SELF -> G.Repeat (loc, tac) ] | "simple" NONA [ IDENT "first"; SYMBOL "["; tacs = LIST0 SELF SEP SYMBOL "|"; SYMBOL "]"-> G.First (loc, tacs) | IDENT "try"; tac = SELF -> G.Try (loc, tac) | IDENT "solve"; SYMBOL "["; tacs = LIST0 SELF SEP SYMBOL "|"; SYMBOL "]"-> G.Solve (loc, tacs) | IDENT "progress"; tac = SELF -> G.Progress (loc, tac) | LPAREN; tac = SELF; RPAREN -> tac | tac = tactic -> tac ] ]; *) npunctuation_tactical: [ [ SYMBOL "[" -> G.NBranch loc | SYMBOL "|" -> G.NShift loc | i = LIST1 int SEP SYMBOL ","; SYMBOL ":" -> G.NPos (loc, i) | SYMBOL "*"; SYMBOL ":" -> G.NWildcard loc | name = IDENT; SYMBOL ":" -> G.NPosbyname (loc, name) | SYMBOL "]" -> G.NMerge loc | SYMBOL ";" -> G.NSemicolon loc | SYMBOL "." -> G.NDot loc ] ]; nnon_punctuation_tactical: [ "simple" NONA [ IDENT "focus"; goals = LIST1 int -> G.NFocus (loc, goals) | IDENT "unfocus" -> G.NUnfocus loc | IDENT "skip" -> G.NSkip loc ] ]; ntheorem_flavour: [ [ [ IDENT "definition" ] -> `Definition | [ IDENT "fact" ] -> `Fact | [ IDENT "lemma" ] -> `Lemma | [ IDENT "example" ] -> `Example | [ IDENT "theorem" ] -> `Theorem | [ IDENT "corollary" ] -> `Corollary ] ]; inductive_spec: [ [ fst_name = IDENT; params = LIST0 protected_binder_vars; SYMBOL ":"; fst_typ = term; SYMBOL <:unicode>; OPT SYMBOL "|"; fst_constructors = LIST0 constructor SEP SYMBOL "|"; tl = OPT [ "with"; types = LIST1 [ name = IDENT; SYMBOL ":"; typ = term; SYMBOL <:unicode>; OPT SYMBOL "|"; constructors = LIST0 constructor SEP SYMBOL "|" -> (name, true, typ, constructors) ] SEP "with" -> types ] -> let params = List.fold_right (fun (names, typ) acc -> (List.map (fun name -> (name, typ)) names) @ acc) params [] in let fst_ind_type = (fst_name, true, fst_typ, fst_constructors) in let tl_ind_types = match tl with None -> [] | Some types -> types in let ind_types = fst_ind_type :: tl_ind_types in (params, ind_types) ] ]; record_spec: [ [ name = IDENT; params = LIST0 protected_binder_vars; SYMBOL ":"; typ = term; SYMBOL <:unicode>; SYMBOL "{" ; fields = LIST0 [ name = IDENT ; coercion = [ SYMBOL ":" -> false,0 | SYMBOL ":"; SYMBOL ">" -> true,0 | SYMBOL ":"; arity = int ; SYMBOL ">" -> true,arity ]; ty = term -> let b,n = coercion in (name,ty,b,n) ] SEP SYMBOL ";"; SYMBOL "}" -> let params = List.fold_right (fun (names, typ) acc -> (List.map (fun name -> (name, typ)) names) @ acc) params [] in (params,name,typ,fields) ] ]; alias_spec: [ [ IDENT "id"; id = QSTRING; SYMBOL "="; uri = QSTRING -> let alpha = "[a-zA-Z]" in let num = "[0-9]+" in let ident_cont = "\\("^alpha^"\\|"^num^"\\|_\\|\\\\\\)" in let decoration = "\\'" in let ident = "\\("^alpha^ident_cont^"*"^decoration^"*\\|_"^ident_cont^"+"^decoration^"*\\)" in let rex = Str.regexp ("^"^ident^"$") in if Str.string_match rex id 0 then if (try ignore (NReference.reference_of_string uri); true with NReference.IllFormedReference _ -> false) then G.Ident_alias (id, uri) else raise (HExtlib.Localized (loc, CicNotationParser.Parse_error (Printf.sprintf "Not a valid uri: %s" uri))) else raise (HExtlib.Localized (loc, CicNotationParser.Parse_error ( Printf.sprintf "Not a valid identifier: %s" id))) | IDENT "symbol"; symbol = QSTRING; instance = OPT [ LPAREN; IDENT "instance"; n = int; RPAREN -> n ]; SYMBOL "="; dsc = QSTRING -> let instance = match instance with Some i -> i | None -> 0 in G.Symbol_alias (symbol, instance, dsc) | IDENT "num"; instance = OPT [ LPAREN; IDENT "instance"; n = int; RPAREN -> n ]; SYMBOL "="; dsc = QSTRING -> let instance = match instance with Some i -> i | None -> 0 in G.Number_alias (instance, dsc) ] ]; argument: [ [ l = LIST0 [ SYMBOL <:unicode> (* η *); SYMBOL "." -> () ]; id = IDENT -> N.IdentArg (List.length l, id) ] ]; associativity: [ [ IDENT "left"; IDENT "associative" -> Gramext.LeftA | IDENT "right"; IDENT "associative" -> Gramext.RightA | IDENT "non"; IDENT "associative" -> Gramext.NonA ] ]; precedence: [ [ "with"; IDENT "precedence"; n = NUMBER -> int_of_string n ] ]; notation: [ [ dir = OPT direction; s = QSTRING; assoc = OPT associativity; prec = precedence; IDENT "for"; p2 = [ blob = UNPARSED_AST -> add_raw_attribute ~text:(Printf.sprintf "@{%s}" blob) (CicNotationParser.parse_level2_ast lstatus (Ulexing.from_utf8_string blob)) | blob = UNPARSED_META -> add_raw_attribute ~text:(Printf.sprintf "${%s}" blob) (CicNotationParser.parse_level2_meta lstatus (Ulexing.from_utf8_string blob)) ] -> let assoc = match assoc with | None -> default_associativity | Some assoc -> assoc in let p1 = add_raw_attribute ~text:s (CicNotationParser.parse_level1_pattern lstatus prec (Ulexing.from_utf8_string s)) in (dir, p1, assoc, prec, p2) ] ]; level3_term: [ [ r = NREF -> N.NRefPattern (NReference.reference_of_string r) | IMPLICIT -> N.ImplicitPattern | id = IDENT -> N.VarPattern id | LPAREN; terms = LIST1 SELF; RPAREN -> (match terms with | [] -> assert false | [term] -> term | terms -> N.ApplPattern terms) ] ]; interpretation: [ [ s = CSYMBOL; args = LIST0 argument; SYMBOL "="; t = level3_term -> (s, args, t) ] ]; include_command: [ [ IDENT "include" ; path = QSTRING -> loc,path,G.WithPreferences | IDENT "include" ; IDENT "alias"; path = QSTRING -> loc,path,G.OnlyPreferences | IDENT "include'" ; path = QSTRING -> loc,path,G.WithoutPreferences ]]; index: [[ b = OPT SYMBOL "-" -> match b with None -> true | _ -> false ]]; grafite_ncommand: [ [ IDENT "qed" ; i = index -> G.NQed (loc,i) | nflavour = ntheorem_flavour; name = IDENT; SYMBOL ":"; typ = term; body = OPT [ SYMBOL <:unicode> (* ≝ *); body = term -> body ] -> G.NObj (loc, N.Theorem (nflavour, name, typ, body,`Regular),true) | nflavour = ntheorem_flavour; name = IDENT; SYMBOL <:unicode> (* ≝ *); body = term -> G.NObj (loc, N.Theorem(nflavour, name, N.Implicit `JustOne, Some body,`Regular), true) | IDENT "axiom"; i = index; name = IDENT; SYMBOL ":"; typ = term -> G.NObj (loc, N.Theorem (`Axiom, name, typ, None, `Regular),i) | IDENT "discriminator" ; indty = tactic_term -> G.NDiscriminator (loc,indty) | IDENT "inverter"; name = IDENT; IDENT "for" ; indty = tactic_term ; paramspec = OPT inverter_param_list ; outsort = OPT [ SYMBOL ":" ; outsort = term -> outsort ] -> G.NInverter (loc,name,indty,paramspec,outsort) | LETCOREC ; defs = let_codefs -> nmk_rec_corec `CoInductive defs loc true | LETREC ; defs = let_defs -> nmk_rec_corec `Inductive defs loc true | IDENT "inductive"; spec = inductive_spec -> let (params, ind_types) = spec in G.NObj (loc, N.Inductive (params, ind_types),true) | IDENT "coinductive"; spec = inductive_spec -> let (params, ind_types) = spec in let ind_types = (* set inductive flags to false (coinductive) *) List.map (fun (name, _, term, ctors) -> (name, false, term, ctors)) ind_types in G.NObj (loc, N.Inductive (params, ind_types),true) | IDENT "universe"; IDENT "constraint"; u1 = tactic_term; SYMBOL <:unicode> ; u2 = tactic_term -> let urify = function | NotationPt.AttributedTerm (_, NotationPt.Sort (`NType i)) -> NUri.uri_of_string ("cic:/matita/pts/Type"^i^".univ") | _ -> raise (Failure "only a Type[…] sort can be constrained") in let u1 = urify u1 in let u2 = urify u2 in G.NUnivConstraint (loc,u1,u2) | IDENT "unification"; IDENT "hint"; n = int; t = tactic_term -> G.UnificationHint (loc, t, n) | IDENT "coercion"; name = IDENT; compose = OPT [ IDENT "nocomposites" -> () ]; spec = OPT [ SYMBOL ":"; ty = term; SYMBOL <:unicode>; t = term; "on"; id = [ IDENT | PIDENT ]; SYMBOL ":"; source = term; "to"; target = term -> t,ty,(id,source),target ] -> let compose = compose = None in G.NCoercion(loc,name,compose,spec) | IDENT "record" ; (params,name,ty,fields) = record_spec -> G.NObj (loc, N.Record (params,name,ty,fields),true) | IDENT "copy" ; s = IDENT; IDENT "from"; u = URI; "with"; m = LIST0 [ u1 = URI; SYMBOL <:unicode>; u2 = URI -> u1,u2 ] -> G.NCopy (loc,s,NUri.uri_of_string u, List.map (fun a,b -> NUri.uri_of_string a, NUri.uri_of_string b) m) | lc = lexicon_command -> lc ]]; lexicon_command: [ [ IDENT "alias" ; spec = alias_spec -> G.Alias (loc, spec) | IDENT "notation"; (dir, l1, assoc, prec, l2) = notation -> G.Notation (loc, dir, l1, assoc, prec, l2) | IDENT "interpretation"; id = QSTRING; (symbol, args, l3) = interpretation -> G.Interpretation (loc, id, (symbol, args), l3) ]]; executable: [ [ ncmd = grafite_ncommand; SYMBOL "." -> G.NCommand (loc, ncmd) | punct = npunctuation_tactical -> G.NTactic (loc, [punct]) | tac = nnon_punctuation_tactical(*; punct = npunctuation_tactical*) -> G.NTactic (loc, [tac]) | tac = ntactic (*; punct = npunctuation_tactical*) -> tac (* | tac = nnon_punctuation_tactical; punct = npunctuation_tactical -> G.NTactic (loc, [tac; punct]) *) ] ]; comment: [ [ BEGINCOMMENT ; ex = executable ; ENDCOMMENT -> G.Code (loc, ex) | str = NOTE -> G.Note (loc, str) ] ]; statement: [ [ ex = executable -> G.Executable (loc, ex) | com = comment -> G.Comment (loc, com) | (iloc,fname,mode) = include_command ; SYMBOL "." -> G.Executable (loc,G.NCommand (loc,G.Include (iloc,mode,fname))) | EOI -> raise End_of_file ] ]; END; (* }}} *) statement ;; type db = GrafiteAst.statement Grammar.Entry.e ;; class type g_status = object inherit CicNotationParser.g_status method parser_db: db end class virtual status = object(self) inherit CicNotationParser.status ~keywords:[] val mutable db = None (* mutable only to initialize it :-( *) method parser_db = match db with None -> assert false | Some x -> x method set_parser_db v = {< db = Some v >} method set_parser_status : 'status. #g_status as 'status -> 'self = fun o -> {< db = Some o#parser_db >}#set_notation_parser_status o initializer let grammar = CicNotationParser.level2_ast_grammar self in db <- Some (mk_parser (Grammar.Entry.create grammar "statement") self) end let extend status l1 action = let status = CicNotationParser.extend status l1 action in let grammar = CicNotationParser.level2_ast_grammar status in status#set_parser_db (mk_parser (Grammar.Entry.create grammar "statement") status) ;; let parse_statement status = parse_statement status#parser_db (* vim:set foldmethod=marker: *)