(* ||M|| This file is part of HELM, an Hypertextual, Electronic ||A|| Library of Mathematics, developed at the Computer Science ||T|| Department, University of Bologna, Italy. ||I|| ||T|| HELM is free software; you can redistribute it and/or ||A|| modify it under the terms of the GNU General Public License \ / version 2 or (at your option) any later version. \ / This software is distributed as is, NO WARRANTY. V_______________________________________________________________ *) (* $Id: nCic.ml 9058 2008-10-13 17:42:30Z tassi $ *) let fresh_name = let i = ref 0 in function () -> incr i; "x_" ^ string_of_int !i ;; let mk_id id = let id = if id = "_" then fresh_name () else id in NotationPt.Ident (id,None) ;; (*CSC: cut&paste from nCicReduction.split_prods, but does not check that the return type is a sort *) let rec my_split_prods status ~subst context n te = match (n, NCicReduction.whd status ~subst context te) with | (0, _) -> context,te | (n, NCic.Prod (name,so,ta)) -> my_split_prods status ~subst ((name,(NCic.Decl so))::context) (n - 1) ta | (n, _) when n <= 0 -> context,te | (_, _) -> raise (Failure "my_split_prods") ;; let mk_appl = function [] -> assert false | [x] -> x | NotationPt.Appl l1 :: l2 -> NotationPt.Appl (l1 @ l2) | l -> NotationPt.Appl l ;; let mk_elim status uri leftno it (outsort,suffix) pragma = let _,ind_name,ty,cl = it in let srec_name = ind_name ^ "_" ^ suffix in let rec_name = mk_id srec_name in let name_of_k id = mk_id ("H_" ^ id) in let p_name = mk_id "Q_" in let params,ty = NCicReduction.split_prods status ~subst:[] [] leftno ty in let params = List.rev_map (function name,_ -> mk_id name) params in let args,_sort = NCicReduction.split_prods status ~subst:[] [] (-1) ty in let args = List.rev_map (function name,_ -> mk_id name) args in let rec_arg = mk_id (fresh_name ()) in let mk_prods = List.fold_right (fun name res -> NotationPt.Binder (`Forall,(name,None),res)) in let p_ty = mk_prods args (NotationPt.Binder (`Forall, (rec_arg,Some (mk_appl (mk_id ind_name :: params @ args))), NotationPt.Sort outsort)) in let mk_arrs n = mk_prods (HExtlib.mk_list (mk_id "_") n) in let args = args @ [rec_arg] in let k_names = List.map (function _,name,_ -> name_of_k name) cl in (* let final_params = List.map (function name -> name, None) params @ [p_name,Some p_ty] @ List.map (function name -> name, None) k_names @ List.map (function name -> name, None) args in *) let cty = mk_appl (p_name :: args) in let ty = Some cty in let branches_with_args = List.map (function (_,name,ty) -> let _,ty = NCicReduction.split_prods status ~subst:[] [] leftno ty in let cargs,_ty= my_split_prods status ~subst:[] [] (-1) ty in let cargs_recargs_nih = List.fold_left (fun (acc,nih) -> function _,NCic.Def _ -> assert false | name,NCic.Decl ty -> let context,ty = my_split_prods status ~subst:[] [] (-1) ty in match ty with | NCic.Const nref | NCic.Appl (NCic.Const nref::_) when let NReference.Ref (uri',_) = nref in NUri.eq uri uri' -> let abs = List.rev_map (fun id,_ -> mk_id id) context in let name = mk_id name in (name, Some ( List.fold_right (fun id res -> NotationPt.Binder (`Lambda,(id,None),res)) abs (NotationPt.Appl (rec_name :: params @ [p_name] @ k_names @ List.map (fun _ -> NotationPt.Implicit `JustOne) (List.tl args) @ [mk_appl (name::abs)]))))::acc, nih + 1 | _ -> (mk_id name,None)::acc,nih ) ([],0) cargs in let cargs_and_recursive_args, nih = cargs_recargs_nih in let cargs,recursive_args = List.split cargs_and_recursive_args in let recursive_args = HExtlib.filter_map (fun x -> x) recursive_args in (NotationPt.Pattern (name,None,List.map (fun x -> x,None) cargs), mk_appl (name_of_k name :: cargs @ recursive_args)), (name,cargs, nih) ) cl in let branches, branch_args = List.split branches_with_args in let bo = NotationPt.Case (rec_arg,Some (ind_name,None),Some p_name,branches) in let final_params = List.map (function name -> name, None) params @ [p_name,Some p_ty] @ List.map (function name, cargs, nih -> name_of_k name, Some (mk_prods cargs (mk_arrs nih (mk_appl (p_name::HExtlib.mk_list (NotationPt.Implicit `JustOne) (List.length args - 1) @ [mk_appl (mk_id name :: params @ cargs)]))))) branch_args @ List.map (function name -> name, None) args in let recno = List.length final_params in let where = recno - 1 in let attrs = `Generated, `Definition, pragma in let res = NotationPt.LetRec (`Inductive, [final_params, (rec_name,ty), bo, where], attrs) in (* prerr_endline (BoxPp.render_to_string ~map_unicode_to_tex:false (function x::_ -> x | _ -> assert false) 80 (NotationPres.render (fun _ -> None) (TermContentPres.pp_ast res))); prerr_endline "#####"; let cobj = ("xxx", [], None, `Joint { Content.joint_id = "yyy"; joint_kind = `Recursive [recno]; joint_defs = [ `Definition { Content.def_name = Some srec_name; def_id = "zzz"; def_aref = "www"; def_term = bo; def_type = List.fold_right (fun x t -> NotationPt.Binder(`Forall,x,t)) final_params cty } ]; }) in let ids_to_nrefs = Hashtbl.create 1 in let boxml = Content2pres.ncontent2pres ~ids_to_nrefs cobj in prerr_endline ( (BoxPp.render_to_string ~map_unicode_to_tex:false (function x::_ -> x | _ -> assert false) 80 (NotationPres.mpres_of_box boxml))); *) res ;; let ast_of_sort s = let headrm prefix s = try let len_prefix = String.length prefix in assert (String.sub s 0 len_prefix = prefix); String.sub s len_prefix (String.length s - len_prefix) with Invalid_argument _ -> assert false in match s with | NCic.Prop -> `Prop,"ind" | NCic.Type [] -> `NType "", "rect_Type" | NCic.Type ((`Type,u) :: _) -> let name = NUri.name_of_uri u in `NType (headrm "Type" name), "rect_" ^ name | NCic.Type ((`CProp,u) :: _) -> let name = NUri.name_of_uri u in `NCProp (headrm "Type" name), "rect_" ^ Str.replace_first (Str.regexp "Type") "CProp" name | _ -> assert false ;; let mk_elims status (uri,_,_,_,obj) = match obj with NCic.Inductive (true,leftno,[itl],_) -> List.map (fun s-> mk_elim status uri leftno itl (ast_of_sort s) (`Elim s)) (NCic.Prop:: List.map (fun s -> NCic.Type s) (NCicEnvironment.get_universes ())) | _ -> [] ;; (********************* Projections **********************) let mk_lambda = function [] -> assert false | [t] -> t | l -> NotationPt.Appl l ;; let rec count_prods = function NCic.Prod (_,_,t) -> 1 + count_prods t | _ -> 0;; let rec nth_prod projs n ty = match ty with NCic.Prod (_,s,_) when n=0 -> projs, s | NCic.Prod (name,_,t) -> nth_prod (name::projs) (n-1) t | _ -> assert false ;; (* this code should be unified with NTermCicContent.nast_of_cic0, but the two contexts have different types *) let pp (status: #NCic.status) = let rec pp rels = function NCic.Rel i -> List.nth rels (i - 1) | NCic.Const _ as t -> NotationPt.NCic t | NCic.Sort s -> NotationPt.Sort (fst (ast_of_sort s)) | NCic.Meta _ | NCic.Implicit _ -> assert false | NCic.Appl l -> NotationPt.Appl (List.map (pp rels) l) | NCic.Prod (n,s,t) -> let n = mk_id n in NotationPt.Binder (`Pi, (n,Some (pp rels s)), pp (n::rels) t) | NCic.Lambda (n,s,t) -> let n = mk_id n in NotationPt.Binder (`Lambda, (n,Some (pp rels s)), pp (n::rels) t) | NCic.LetIn (n,ty,s,t) -> let n = mk_id n in NotationPt.LetIn ((n, Some (pp rels ty)), pp rels s, pp (n::rels) t) | NCic.Match (NReference.Ref (uri,_) as r,outty,te,patterns) -> let name = NUri.name_of_uri uri in let case_indty = Some (name, None) in let constructors, leftno = let _,leftno,tys,_,n = NCicEnvironment.get_checked_indtys status r in let _,_,_,cl = List.nth tys n in cl,leftno in let rec eat_branch n rels ty pat = match (ty, pat) with | NCic.Prod (_name, _s, t), _ when n > 0 -> eat_branch (pred n) rels t pat | NCic.Prod (_, _, t), NCic.Lambda (name, s, t') -> let cv, rhs = eat_branch 0 ((mk_id name)::rels) t t' in (mk_id name, Some (pp rels s)) :: cv, rhs | _, _ -> [], pp rels pat in let patterns = try List.map2 (fun (_, name, ty) pat -> let capture_variables,rhs = eat_branch leftno rels ty pat in NotationPt.Pattern (name, None, capture_variables), rhs ) constructors patterns with Invalid_argument _ -> assert false in NotationPt.Case (pp rels te, case_indty, Some (pp rels outty), patterns) in pp ;; let mk_projection status leftno tyname consname consty (projname,_,_) i = let argsno = count_prods consty - leftno in let rec aux names ty leftno = match leftno,ty with | 0,_ -> let arg = mk_id "xxx" in let arg_ty = mk_appl (mk_id tyname :: List.rev names) in let bvar = mk_id "yyy" in let underscore = NotationPt.Ident ("_",None),None in let bvars = HExtlib.mk_list underscore i @ [bvar,None] @ HExtlib.mk_list underscore (argsno - i -1) in let branch = NotationPt.Pattern (consname,None,bvars), bvar in let projs,outtype = nth_prod [] i ty in let rels = List.map (fun name -> mk_appl (mk_id name :: List.rev names @ [arg])) projs @ names in let outtype = pp status rels outtype in let outtype= NotationPt.Binder (`Lambda, (arg, Some arg_ty), outtype) in [arg, Some arg_ty], NotationPt.Case (arg,None,Some outtype,[branch]) | _,NCic.Prod (name,_,t) -> let name = mk_id name in let params,body = aux (name::names) t (leftno - 1) in (name,None)::params, body | _,_ -> assert false in let params,bo = aux [] consty leftno in let pprojname = mk_id projname in let attrs = `Generated, `Definition, `Projection in let res = NotationPt.LetRec (`Inductive, [params, (pprojname,None), bo, leftno], attrs) in (* prerr_endline (BoxPp.render_to_string ~map_unicode_to_tex:false (function x::_ -> x | _ -> assert false) 80 (NotationPres.render (fun _ -> None) (TermContentPres.pp_ast res)));*) res ;; let mk_projections status (_,_,_,_,obj) = match obj with NCic.Inductive (true,leftno,[_,tyname,_,[_,consname,consty]],(_,`Record fields)) -> HExtlib.list_mapi (mk_projection status leftno tyname consname consty) fields | _ -> [] ;;