(* ||M|| This file is part of HELM, an Hypertextual, Electronic ||A|| Library of Mathematics, developed at the Computer Science ||T|| Department, University of Bologna, Italy. ||I|| ||T|| HELM is free software; you can redistribute it and/or ||A|| modify it under the terms of the GNU General Public License \ / version 2 or (at your option) any later version. \ / This software is distributed as is, NO WARRANTY. V_______________________________________________________________ *) (* $Id: nCic.ml 9058 2008-10-13 17:42:30Z tassi $ *) open Printf let debug = false let debug_print s = if debug then prerr_endline (Lazy.force s) else () open Continuationals.Stack open NTacStatus module Ast = NotationPt let id_tac status = status ;; let print_tac print_status message status = if print_status then pp_tac_status status; prerr_endline message; status ;; let dot_tac status = let gstatus = match status#stack with | [] -> assert false | ([], _, [], _) :: _ as stack -> (* backward compatibility: do-nothing-dot *) stack | (g, t, k, tag) :: s -> match filter_open g, k with | loc :: loc_tl, _ -> (([ loc ], t, loc_tl @+ k, tag) :: s) | [], loc :: k -> assert (is_open loc); (([ loc ], t, k, tag) :: s) | _ -> fail (lazy "can't use \".\" here") in status#set_stack gstatus ;; let branch_tac ?(force=false) status = let gstatus = match status#stack with | [] -> assert false | (g, t, k, tag) :: s -> match init_pos g with (* TODO *) | [] -> fail (lazy "empty goals") | [_] when (not force) -> fail (lazy "too few goals to branch") | loc :: loc_tl -> ([ loc ], [], [], `BranchTag) :: (loc_tl, t, k, tag) :: s in status#set_stack gstatus ;; let shift_tac status = let gstatus = match status#stack with | (g, t, k, `BranchTag) :: (g', t', k', tag) :: s -> (match g' with | [] -> fail (lazy "no more goals to shift") | loc :: loc_tl -> (([ loc ], t @+ filter_open g @+ k, [],`BranchTag) :: (loc_tl, t', k', tag) :: s)) | _ -> fail (lazy "can't shift goals here") in status#set_stack gstatus ;; let pos_tac i_s status = let gstatus = match status#stack with | [] -> assert false | ([ loc ], t, [],`BranchTag) :: (g', t', k', tag) :: s when is_fresh loc -> let l_js = List.filter (fun (i, _) -> List.mem i i_s) ([loc] @+ g') in ((l_js, t , [],`BranchTag) :: (([ loc ] @+ g') @- l_js, t', k', tag) :: s) | _ -> fail (lazy "can't use relative positioning here") in status#set_stack gstatus ;; let case_tac lab status = let gstatus = match status#stack with | [] -> assert false | ([ loc ], t, [],`BranchTag) :: (g', t', k', tag) :: s when is_fresh loc -> let l_js = List.filter (fun curloc -> let _,_,metasenv,_,_ = status#obj in match NCicUtils.lookup_meta (goal_of_loc curloc) metasenv with attrs,_,_ when List.mem (`Name lab) attrs -> true | _ -> false) ([loc] @+ g') in ((l_js, t , [],`BranchTag) :: (([ loc ] @+ g') @- l_js, t', k', tag) :: s) | _ -> fail (lazy "can't use relative positioning here") in status#set_stack gstatus ;; let wildcard_tac status = let gstatus = match status#stack with | [] -> assert false | ([ loc ] , t, [], `BranchTag) :: (g', t', k', tag) :: s when is_fresh loc -> (([loc] @+ g', t, [], `BranchTag) :: ([], t', k', tag) :: s) | _ -> fail (lazy "can't use wildcard here") in status#set_stack gstatus ;; let merge_tac status = let gstatus = match status#stack with | [] -> assert false | (g, t, k,`BranchTag) :: (g', t', k', tag) :: s -> ((t @+ filter_open g @+ g' @+ k, t', k', tag) :: s) | _ -> fail (lazy "can't merge goals here") in status#set_stack gstatus ;; let focus_tac gs status = let gstatus = match status#stack with | [] -> assert false | s -> assert(gs <> []); let stack_locs = let add_l acc _ _ l = if is_open l then l :: acc else acc in fold ~env:add_l ~cont:add_l ~todo:add_l [] s in List.iter (fun g -> if not (List.exists (fun l -> goal_of_loc l = g) stack_locs) then fail (lazy (sprintf "goal %d not found (or closed)" g))) gs; (zero_pos gs, [], [], `FocusTag) :: deep_close gs s in status#set_stack gstatus ;; let unfocus_tac status = let gstatus = match status#stack with | [] -> assert false | (g, [], [], `FocusTag) :: s when filter_open g = [] -> s | _ as s -> fail (lazy ("can't unfocus, some goals are still open:\n"^ Continuationals.Stack.pp s)) in status#set_stack gstatus ;; let skip_tac status = let gstatus = match status#stack with | [] -> assert false | (gl, t, k, tag) :: s -> let gl = List.map switch_of_loc gl in if List.exists (function Open _ -> true | Closed _ -> false) gl then fail (lazy "cannot skip an open goal") else ([],t,k,tag) :: s in status#set_stack gstatus ;; let block_tac l status = List.fold_left (fun status tac -> tac status) status l ;; let compare_statuses ~past ~present = let _,_,past,_,_ = past#obj in let _,_,present,_,_ = present#obj in List.map fst (List.filter (fun (i,_) -> not(List.mem_assoc i past)) present), List.map fst (List.filter (fun (i,_) -> not (List.mem_assoc i present)) past) ;; (* Exec and distribute_tac form a retraction pair: 1) exec (distribute_tac low_tac) (s,i) = low_tac (s,i) 2) tac [s]::G = G1::...::Gn::G' && G' is G with some goals closed => distribute_tac (exec tac) [s]::G = (G1@...Gn)::G' 3) tac G = distribute_tac (exec tac) G if tac = distribute_tac lowtac 4) atomic_tac t === distribute_tac (exec t) Note that executing an high tactic on a set of goals may be stronger than executing the same tactic on those goals, but once at a time (e.g. the tactic could perform a global analysis of the set of goals) *) (* CSC: potential bug here: the new methods still use the instance variables of the old status and not the instance variables of the new one *) let change_stack_type (status : 'a #NTacStatus.status) (stack: 'b) : 'b NTacStatus.status = let o = object inherit ['b] NTacStatus.status status#obj stack method ppterm = status#ppterm method ppcontext = status#ppcontext method ppsubst = status#ppsubst method ppobj = status#ppobj method ppmetasenv = status#ppmetasenv end in o#set_pstatus status ;; let exec tac (low_status : #lowtac_status) g = let stack = [ [0,Open g], [], [], `NoTag ] in let status = change_stack_type low_status stack in let status = tac status in (low_status#set_pstatus status)#set_obj status#obj ;; let distribute_tac tac (status : #tac_status) = match status#stack with | [] -> assert false | (g, t, k, tag) :: s -> debug_print (lazy ("context length " ^string_of_int (List.length g))); let rec aux s go gc = function | [] -> debug_print (lazy "no selected goals"); s, go, gc | loc :: loc_tl -> debug_print (lazy "inner eval tactical"); let s, go, gc = if List.exists ((=) (goal_of_loc loc)) gc then s, go, gc else match switch_of_loc loc with | Closed _ -> fail (lazy "cannot apply to a Closed goal") | Open n -> let sn = tac s n in let go', gc' = compare_statuses ~past:s ~present:sn in sn, ((go @+ [n]) @- gc') @+ go', gc @+ gc' in aux s go gc loc_tl in let s0 = change_stack_type status () in let s0, go0, gc0 = s0, [], [] in let sn, gon, gcn = aux s0 go0 gc0 g in debug_print (lazy ("opened: " ^ String.concat " " (List.map string_of_int gon))); debug_print (lazy ("closed: " ^ String.concat " " (List.map string_of_int gcn))); let stack = (zero_pos gon, t @~- gcn, k @~- gcn, tag) :: deep_close gcn s in ((status#set_stack stack)#set_obj(sn:>lowtac_status)#obj)#set_pstatus sn ;; let atomic_tac htac: #tac_status as 'a -> 'a = distribute_tac (exec htac) ;; let repeat_tac t s = let rec repeat t (status : #tac_status as 'a) : 'a = try repeat t (t status) with NTacStatus.Error _ -> status in atomic_tac (repeat t) s ;; let try_tac tac status = let try_tac status = try tac status with NTacStatus.Error _ -> status in atomic_tac try_tac status ;; let first_tac tacl status = let res = HExtlib.list_findopt (fun tac _ -> try Some (tac status) with NTacStatus.Error _ -> None) tacl in match res with | None -> fail (lazy "No tactics left") | Some x -> x ;; let exact_tac t : 's tactic = distribute_tac (fun status goal -> instantiate_with_ast status goal t) ;; let assumption_tac status = distribute_tac (fun status goal -> let gty = get_goalty status goal in let context = ctx_of gty in let htac = first_tac (List.map (fun (name,_) -> exact_tac ("",0,(Ast.Ident (name,None)))) context) in exec htac status goal) status ;; let find_in_context name context = let rec aux acc = function | [] -> raise Not_found | (hd,_) :: tl when hd = name -> acc | _ :: tl -> aux (acc + 1) tl in aux 1 context ;; let clear_tac names = if names = [] then id_tac else distribute_tac (fun status goal -> let goalty = get_goalty status goal in let js = List.map (fun name -> try find_in_context name (ctx_of goalty) with Not_found -> fail (lazy ("hypothesis '" ^ name ^ "' not found"))) names in let n,h,metasenv,subst,o = status#obj in let metasenv,subst,_,_ = NCicMetaSubst.restrict status metasenv subst goal js in status#set_obj (n,h,metasenv,subst,o)) ;; let generalize0_tac args = if args = [] then id_tac else exact_tac ("",0,Ast.Appl (Ast.Implicit `JustOne :: args)) ;; let select0_tac ~where ~job = let found, postprocess = match job with | `Substexpand argsno -> mk_in_scope, mk_out_scope argsno | `Collect l -> (fun s t -> l := t::!l; mk_in_scope s t), mk_out_scope 1 | `ChangeWith f -> f,(fun s t -> s, t) in distribute_tac (fun status goal -> let wanted,hyps,where = GrafiteDisambiguate.disambiguate_npattern status where in let goalty = get_goalty status goal in let path = match where with None -> NCic.Implicit `Term | Some where -> where in let status, newgoalctx = List.fold_right (fun (name,d as entry) (status,ctx) -> try let path = List.assoc name hyps in match d with NCic.Decl ty -> let status,ty = select_term status ~found ~postprocess (mk_cic_term ctx ty) (wanted,path) in let status,ty = term_of_cic_term status ty ctx in status,(name,NCic.Decl ty)::ctx | NCic.Def (bo,ty) -> let status,bo = select_term status ~found ~postprocess (mk_cic_term ctx bo) (wanted,path) in let status,bo = term_of_cic_term status bo ctx in status,(name,NCic.Def (bo,ty))::ctx with Not_found -> status, entry::ctx ) (ctx_of goalty) (status,[]) in let status, newgoalty = select_term status ~found ~postprocess goalty (wanted,path) in (* WARNING: the next two lines simply change the context of newgoalty from the old to the new one. Otherwise mk_meta will do that herself, calling relocate that calls delift. However, newgoalty is now ?[out_scope] and thus the delift would trigger the special unification case, which is wrong now :-( *) let status,newgoalty = term_of_cic_term status newgoalty (ctx_of goalty) in let newgoalty = mk_cic_term newgoalctx newgoalty in let status, instance = mk_meta status newgoalctx (`Decl newgoalty) `IsTerm in instantiate ~refine:false status goal instance) ;; let select_tac ~where:((txt,txtlen,(wanted,hyps,path)) as where) ~job move_down_hyps = if not move_down_hyps then select0_tac ~where ~job else let path = List.fold_left (fun path (name,ty) -> NotationPt.Binder (`Forall, (NotationPt.Ident (name,None),Some ty),path)) (match path with Some x -> x | None -> NotationPt.UserInput) (List.rev hyps) in block_tac [ generalize0_tac (List.map (fun (name,_) -> Ast.Ident (name,None)) hyps); select0_tac ~where:(txt,txtlen,(wanted,[],Some path)) ~job; clear_tac (List.map fst hyps) ] ;; let generalize_tac ~where = let l = ref [] in block_tac [ select_tac ~where ~job:(`Collect l) true; (fun s -> distribute_tac (fun status goal -> let goalty = get_goalty status goal in let status,canon,rest = match !l with [] -> (match where with _,_,(None,_,_) -> fail (lazy "No term to generalize") | txt,txtlen,(Some what,_,_) -> let status, what = disambiguate status (ctx_of goalty) (txt,txtlen,what) `XTNone in status,what,[] ) | he::tl -> status,he,tl in let status = List.fold_left (fun s t -> unify s (ctx_of goalty) canon t) status rest in let status, canon = term_of_cic_term status canon (ctx_of goalty) in instantiate status goal (mk_cic_term (ctx_of goalty) (NCic.Appl [NCic.Implicit `Term ; canon ])) ) s) ] ;; let cut_tac t = atomic_tac (block_tac [ exact_tac ("",0, Ast.Appl [Ast.Implicit `JustOne; Ast.Implicit `JustOne]); branch_tac; pos_tac [3]; exact_tac t; shift_tac; pos_tac [2]; skip_tac; merge_tac ]) ;; let lapply_tac (s,n,t) = exact_tac (s,n, Ast.Appl [Ast.Implicit `JustOne; t]) ;; let reduce_tac ~reduction ~where = let change status t = match reduction with | `Normalize perform_delta -> normalize status ?delta:(if perform_delta then None else Some max_int) (ctx_of t) t | `Whd perform_delta -> whd status ?delta:(if perform_delta then None else Some max_int) (ctx_of t) t in select_tac ~where ~job:(`ChangeWith change) false ;; let change_tac ~where ~with_what = let change status t = (* FG: `XTSort could be used when we change the whole goal *) let status, ww = disambiguate status (ctx_of t) with_what `XTNone in let status = unify status (ctx_of t) t ww in status, ww in select_tac ~where ~job:(`ChangeWith change) false ;; let letin_tac ~where ~what:(_,_,w) name = block_tac [ select_tac ~where ~job:(`Substexpand 1) true; exact_tac ("",0,Ast.LetIn((Ast.Ident (name,None),None),w,Ast.Implicit `JustOne)); ] ;; let apply_tac (s,n,t) = let t = Ast.Appl [t; Ast.Implicit `Vector] in exact_tac (s,n,t) ;; type indtyinfo = { rightno: int; leftno: int; consno: int; reference: NReference.reference; } ;; let ref_of_indtyinfo iti = iti.reference;; let analyze_indty_tac ~what indtyref = distribute_tac (fun (status as orig_status) goal -> let goalty = get_goalty status goal in let status, what = disambiguate status (ctx_of goalty) what `XTInd in let status, ty_what = typeof status (ctx_of what) what in let status, (r,consno,lefts,rights) = analyse_indty status ty_what in let leftno = List.length lefts in let rightno = List.length rights in indtyref := Some { rightno = rightno; leftno = leftno; consno = consno; reference = r; }; exec id_tac orig_status goal) ;; let sort_of_goal_tac sortref = distribute_tac (fun status goal -> let goalty = get_goalty status goal in let status,sort = typeof status (ctx_of goalty) goalty in let status, sort = fix_sorts status sort in let ctx = ctx_of goalty in let status, sort = whd status (ctx_of sort) sort in let status, sort = term_of_cic_term status sort ctx in sortref := sort; status) ;; let elim_tac ~what:(txt,len,what) ~where = let what = txt, len, Ast.Appl [what; Ast.Implicit `Vector] in let indtyinfo = ref None in let sort = ref (NCic.Rel 1) in atomic_tac (block_tac [ analyze_indty_tac ~what indtyinfo; (fun s -> select_tac ~where ~job:(`Substexpand ((HExtlib.unopt !indtyinfo).rightno+1)) true s); sort_of_goal_tac sort; (fun status -> let ity = HExtlib.unopt !indtyinfo in let NReference.Ref (uri, _) = ity.reference in let name = NUri.name_of_uri uri ^ "_" ^ snd (NCicElim.ast_of_sort (match !sort with NCic.Sort x -> x | _ -> assert false)) in let eliminator = let _,_,w = what in Ast.Appl [ Ast.Ident (name,None) ; Ast.Implicit `Vector ; w ] in exact_tac ("",0,eliminator) status) ]) ;; let rewrite_tac ~dir ~what:(_,_,what) ~where status = let sortref = ref (NCic.Rel 1) in let status = sort_of_goal_tac sortref status in let suffix = "_" ^ snd (NCicElim.ast_of_sort (match !sortref with NCic.Sort x -> x | _ -> assert false)) in let name = match dir with `LeftToRight -> "eq" ^ suffix ^ "_r" | `RightToLeft -> "eq" ^ suffix in let what = Ast.Appl [what; Ast.Implicit `Vector] in block_tac [ select_tac ~where ~job:(`Substexpand 2) true; exact_tac ("",0, Ast.Appl(Ast.Ident(name,None)::HExtlib.mk_list (Ast.Implicit `JustOne) 5@ [what]))] status ;; let intro_tac name = block_tac [ exact_tac ("",0,(Ast.Binder (`Lambda, (Ast.Ident (name,None),None),Ast.Implicit `JustOne))); if name = "_" then clear_tac [name] else id_tac ] ;; let name_counter = ref 0;; let intros_tac ?names_ref names s = let names_ref, prefix = match names_ref with | None -> ref [], "__" | Some r -> r, "H" in if names = [] then repeat_tac (fun s -> incr name_counter; (* TODO: generate better names *) let name = prefix ^ string_of_int !name_counter in let s = intro_tac name s in names_ref := !names_ref @ [name]; s) s else block_tac (List.map intro_tac names) s ;; let cases ~what status goal = let gty = get_goalty status goal in let status, what = disambiguate status (ctx_of gty) what `XTInd in let status, ty = typeof status (ctx_of what) what in let status, (ref, consno, _, _) = analyse_indty status ty in let status, what = term_of_cic_term status what (ctx_of gty) in let t = NCic.Match (ref,NCic.Implicit `Term, what, HExtlib.mk_list (NCic.Implicit `Term) consno) in instantiate status goal (mk_cic_term (ctx_of gty) t) ;; let cases_tac ~what:(txt,len,what) ~where = let what = txt, len, Ast.Appl [what; Ast.Implicit `Vector] in let indtyinfo = ref None in atomic_tac (block_tac [ analyze_indty_tac ~what indtyinfo; (fun s -> select_tac ~where ~job:(`Substexpand ((HExtlib.unopt !indtyinfo).rightno+1))true s); distribute_tac (cases ~what) ]) ;; let case1_tac name = let name = if name = "_" then "_clearme" else name in block_tac [ intro_tac name; cases_tac ~where:("",0,(None,[],None)) ~what:("",0,Ast.Ident (name,None)); if name = "_clearme" then clear_tac ["_clearme"] else id_tac ] ;; let constructor_tac ?(num=1) ~args = distribute_tac (fun status goal -> let gty = get_goalty status goal in let status, (r,consno,_,_) = analyse_indty status gty in if num < 1 || num > consno then fail (lazy "Non existant constructor"); let ref = NReference.mk_constructor num r in let t = if args = [] then Ast.NRef ref else Ast.Appl (HExtlib.list_concat ~sep:[Ast.Implicit `Vector] ([Ast.NRef ref] :: List.map (fun _,_,x -> [x]) args)) in exec (apply_tac ("",0,t)) status goal) ;; let assert0_tac (hyps,concl) = distribute_tac (fun status goal -> let gty = get_goalty status goal in let eq status ctx t1 t2 = let status,t1 = disambiguate status ctx t1 `XTSort in let status,t1 = apply_subst status ctx t1 in let status,t1 = term_of_cic_term status t1 ctx in let t2 = mk_cic_term ctx t2 in let status,t2 = apply_subst status ctx t2 in let status,t2 = term_of_cic_term status t2 ctx in prerr_endline ("COMPARING: " ^ status#ppterm ~subst:[] ~metasenv:[] ~context:ctx t1 ^ " vs " ^ status#ppterm ~subst:[] ~metasenv:[] ~context:ctx t2); assert (t1=t2); status in let status,gty' = term_of_cic_term status gty (ctx_of gty) in let status = eq status (ctx_of gty) concl gty' in let status,_ = List.fold_right2 (fun (id1,e1) ((id2,e2) as item) (status,ctx) -> assert (id1=id2 || (prerr_endline (id1 ^ " vs " ^ id2); false)); match e1,e2 with `Decl t1, NCic.Decl t2 -> let status = eq status ctx t1 t2 in status,item::ctx | `Def (b1,t1), NCic.Def (b2,t2) -> let status = eq status ctx t1 t2 in let status = eq status ctx b1 b2 in status,item::ctx | _ -> assert false ) hyps (ctx_of gty) (status,[]) in exec id_tac status goal) ;; let assert_tac seqs status = match status#stack with | [] -> assert false | (g,_,_,_) :: s -> assert (List.length g = List.length seqs); (match seqs with [] -> id_tac | [seq] -> assert0_tac seq | _ -> block_tac ((branch_tac ~force:false):: HExtlib.list_concat ~sep:[shift_tac] (List.map (fun seq -> [assert0_tac seq]) seqs)@ [merge_tac]) ) status ;; let inversion_tac ~what:(txt,len,what) ~where = let what = txt, len, Ast.Appl [what; Ast.Implicit `Vector] in let indtyinfo = ref None in let sort = ref (NCic.Rel 1) in atomic_tac (block_tac [ analyze_indty_tac ~what indtyinfo; (fun s -> select_tac ~where ~job:(`Substexpand ((HExtlib.unopt !indtyinfo).rightno+1)) true s); sort_of_goal_tac sort; (fun status -> let ity = HExtlib.unopt !indtyinfo in let NReference.Ref (uri, _) = ity.reference in let name = NUri.name_of_uri uri ^ "_inv_" ^ snd (NCicElim.ast_of_sort (match !sort with NCic.Sort x -> x | _ -> assert false)) in let eliminator = let _,_,w = what in Ast.Appl [ Ast.Ident (name,None) ; Ast.Implicit `Vector ; w ; Ast.Implicit `Vector] in exact_tac ("",0,eliminator) status) ]) ;;