(**************************************************************************) (* ___ *) (* ||M|| *) (* ||A|| A project by Andrea Asperti *) (* ||T|| *) (* ||I|| Developers: *) (* ||T|| A.Asperti, C.Sacerdoti Coen, *) (* ||A|| E.Tassi, S.Zacchiroli *) (* \ / *) (* \ / Matita is distributed under the terms of the *) (* v GNU Lesser General Public License Version 2.1 *) (* *) (**************************************************************************) set "baseuri" "cic:/matita/nat/div_and_mod_new". include "datatypes/constructors.ma". include "nat/minus.ma". let rec mod_aux t m n: nat \def match (leb (S m) n) with [ true \Rightarrow m | false \Rightarrow match t with [O \Rightarrow m (* if t is large enough this case never happens *) |(S t1) \Rightarrow mod_aux t1 (m-n) n ] ]. definition mod: nat \to nat \to nat \def \lambda m,n.mod_aux m m n. interpretation "natural remainder" 'module x y = (cic:/matita/nat/div_and_mod_new/mod.con x y). lemma O_to_mod_aux: \forall m,n. mod_aux O m n = m. intros. simplify.elim (leb (S m) n);reflexivity. qed. lemma lt_to_mod_aux: \forall t,m,n. m < n \to mod_aux (S t) m n = m. intros. change with ( match (leb (S m) n) with [ true \Rightarrow m | false \Rightarrow mod_aux t (m-n) n] = m). rewrite > (le_to_leb_true ? ? H). reflexivity. qed. lemma le_to_mod_aux: \forall t,m,n. n \le m \to mod_aux (S t) m n = mod_aux t (m-n) n. intros. change with (match (leb (S m) n) with [ true \Rightarrow m | false \Rightarrow mod_aux t (m-n) n] = mod_aux t (m-n) n). apply (leb_elim (S m) n);intro [apply False_ind.apply (le_to_not_lt ? ? H).apply H1 |reflexivity ] qed. let rec div_aux p m n : nat \def match (leb (S m) n) with [ true \Rightarrow O | false \Rightarrow match p with [O \Rightarrow O |(S q) \Rightarrow S (div_aux q (m-n) n)]]. definition div : nat \to nat \to nat \def \lambda n,m.div_aux n n m. interpretation "natural divide" 'divide x y = (cic:/matita/nat/div_and_mod_new/div.con x y). theorem lt_mod_aux_m_m: \forall n. O < n \to \forall t,m. m \leq t \to (mod_aux t m n) < n. intros 3. elim t [rewrite > O_to_mod_aux. apply (le_n_O_elim ? H1). assumption |apply (leb_elim (S m) n);intros [rewrite > lt_to_mod_aux[assumption|assumption] |rewrite > le_to_mod_aux [apply H1. apply le_plus_to_minus. apply (trans_le ? ? ? H2). apply (lt_O_n_elim ? H).intro. rewrite < plus_n_Sm. apply le_S_S. apply le_plus_n_r |apply not_lt_to_le. assumption ] ] ] qed. theorem lt_mod_m_m: \forall n,m. O < m \to (n \mod m) < m. intros.unfold mod. apply lt_mod_aux_m_m[assumption|apply le_n] qed. lemma mod_aux_O: \forall p,n:nat. mod_aux p n O = n. intros. elim p [reflexivity |simplify.rewrite < minus_n_O.assumption ] qed. theorem div_aux_mod_aux: \forall m,p,n:nat. (n=(div_aux p n m)*m + (mod_aux p n m)). intro. apply (nat_case m) [intros.rewrite < times_n_O.simplify.apply sym_eq.apply mod_aux_O |intros 2.elim p [simplify.elim (leb n m1);reflexivity |simplify.apply (leb_elim n1 m1);intro [reflexivity |simplify. rewrite > assoc_plus. rewrite < (H (n1-(S m1))). change with (n1=(S m1)+(n1-(S m1))). rewrite < sym_plus. apply plus_minus_m_m. change with (m1 < n1). apply not_le_to_lt.exact H1. ] ] ] qed. theorem div_mod: \forall n,m:nat. O < m \to n=(n / m)*m+(n \mod m). intros.apply (div_aux_mod_aux m n n). qed. inductive div_mod_spec (n,m,q,r:nat) : Prop \def div_mod_spec_intro: r < m \to n=q*m+r \to (div_mod_spec n m q r). (* definition div_mod_spec : nat \to nat \to nat \to nat \to Prop \def \lambda n,m,q,r:nat.r < m \land n=q*m+r). *) theorem div_mod_spec_to_not_eq_O: \forall n,m,q,r.(div_mod_spec n m q r) \to m \neq O. intros 4.unfold Not.intros.elim H.absurd (le (S r) O) [rewrite < H1.assumption|exact (not_le_Sn_O r)] qed. theorem div_mod_spec_div_mod: \forall n,m. O < m \to (div_mod_spec n m (n / m) (n \mod m)). intros.autobatch. (* apply div_mod_spec_intro. apply lt_mod_m_m.assumption. apply div_mod.assumption. *) qed. theorem div_mod_spec_to_eq :\forall a,b,q,r,q1,r1. (div_mod_spec a b q r) \to (div_mod_spec a b q1 r1) \to q = q1. intros.elim H.elim H1. apply (nat_compare_elim q q1);intro [apply False_ind. cut ((q1-q)*b+r1 = r) [cut (b \leq (q1-q)*b+r1) [cut (b \leq r) [apply (lt_to_not_le r b H2 Hcut2) |elim Hcut.assumption ] |autobatch depth=4. apply (trans_le ? ((q1-q)*b)) [apply le_times_n. apply le_SO_minus.exact H6 |rewrite < sym_plus. apply le_plus_n ] ] |rewrite < sym_times. rewrite > distr_times_minus. rewrite > plus_minus [autobatch. (* rewrite > sym_times. rewrite < H5. rewrite < sym_times. apply plus_to_minus. apply H3 *) |autobatch. (* apply le_times_r. apply lt_to_le. apply H6 *) ] ] (* eq case *) |assumption. (* the following case is symmetric *) intro. apply False_ind. cut (eq nat ((q-q1)*b+r) r1). cut (b \leq (q-q1)*b+r). cut (b \leq r1). apply (lt_to_not_le r1 b H4 Hcut2). elim Hcut.assumption. apply (trans_le ? ((q-q1)*b)). apply le_times_n. apply le_SO_minus.exact H6. rewrite < sym_plus. apply le_plus_n. rewrite < sym_times. rewrite > distr_times_minus. rewrite > plus_minus. rewrite > sym_times. rewrite < H3. rewrite < sym_times. apply plus_to_minus. apply H5. apply le_times_r. apply lt_to_le. apply H6. qed. theorem div_mod_spec_to_eq2 :\forall a,b,q,r,q1,r1. (div_mod_spec a b q r) \to (div_mod_spec a b q1 r1) \to (eq nat r r1). intros.elim H.elim H1. apply (inj_plus_r (q*b)). rewrite < H3. rewrite > (div_mod_spec_to_eq a b q r q1 r1 H H1). assumption. qed. theorem div_mod_spec_times : \forall n,m:nat.div_mod_spec ((S n)*m) (S n) m O. intros.constructor 1. unfold lt.apply le_S_S.apply le_O_n. rewrite < plus_n_O.rewrite < sym_times.reflexivity. qed. (* some properties of div and mod *) theorem div_times: \forall n,m:nat. ((S n)*m) / (S n) = m. intros. apply (div_mod_spec_to_eq ((S n)*m) (S n) ? ? ? O). goal 15. (* ?11 is closed with the following tactics *) apply div_mod_spec_div_mod. unfold lt.apply le_S_S.apply le_O_n. apply div_mod_spec_times. qed. theorem div_n_n: \forall n:nat. O < n \to n / n = S O. intros. apply (div_mod_spec_to_eq n n (n / n) (n \mod n) (S O) O). apply div_mod_spec_div_mod.assumption. constructor 1.assumption. rewrite < plus_n_O.simplify.rewrite < plus_n_O.reflexivity. qed. theorem eq_div_O: \forall n,m. n < m \to n / m = O. intros. apply (div_mod_spec_to_eq n m (n/m) (n \mod m) O n). apply div_mod_spec_div_mod. apply (le_to_lt_to_lt O n m). apply le_O_n.assumption. constructor 1.assumption.reflexivity. qed. theorem mod_n_n: \forall n:nat. O < n \to n \mod n = O. intros. apply (div_mod_spec_to_eq2 n n (n / n) (n \mod n) (S O) O). apply div_mod_spec_div_mod.assumption. constructor 1.assumption. rewrite < plus_n_O.simplify.rewrite < plus_n_O.reflexivity. qed. theorem mod_S: \forall n,m:nat. O < m \to S (n \mod m) < m \to ((S n) \mod m) = S (n \mod m). intros. apply (div_mod_spec_to_eq2 (S n) m ((S n) / m) ((S n) \mod m) (n / m) (S (n \mod m))). apply div_mod_spec_div_mod.assumption. constructor 1.assumption.rewrite < plus_n_Sm. apply eq_f. apply div_mod. assumption. qed. theorem mod_O_n: \forall n:nat.O \mod n = O. intro.elim n.simplify.reflexivity. simplify.reflexivity. qed. theorem lt_to_eq_mod:\forall n,m:nat. n < m \to n \mod m = n. intros. apply (div_mod_spec_to_eq2 n m (n/m) (n \mod m) O n). apply div_mod_spec_div_mod. apply (le_to_lt_to_lt O n m).apply le_O_n.assumption. constructor 1. assumption.reflexivity. qed. (* injectivity *) theorem injective_times_r: \forall n:nat.injective nat nat (\lambda m:nat.(S n)*m). change with (\forall n,p,q:nat.(S n)*p = (S n)*q \to p=q). intros. rewrite < (div_times n). rewrite < (div_times n q). apply eq_f2.assumption. reflexivity. qed. variant inj_times_r : \forall n,p,q:nat.(S n)*p = (S n)*q \to p=q \def injective_times_r. theorem lt_O_to_injective_times_r: \forall n:nat. O < n \to injective nat nat (\lambda m:nat.n*m). simplify. intros 4. apply (lt_O_n_elim n H).intros. apply (inj_times_r m).assumption. qed. variant inj_times_r1:\forall n. O < n \to \forall p,q:nat.n*p = n*q \to p=q \def lt_O_to_injective_times_r. theorem injective_times_l: \forall n:nat.injective nat nat (\lambda m:nat.m*(S n)). simplify. intros. apply (inj_times_r n x y). rewrite < sym_times. rewrite < (sym_times y). assumption. qed. variant inj_times_l : \forall n,p,q:nat. p*(S n) = q*(S n) \to p=q \def injective_times_l. theorem lt_O_to_injective_times_l: \forall n:nat. O < n \to injective nat nat (\lambda m:nat.m*n). simplify. intros 4. apply (lt_O_n_elim n H).intros. apply (inj_times_l m).assumption. qed. variant inj_times_l1:\forall n. O < n \to \forall p,q:nat.p*n = q*n \to p=q \def lt_O_to_injective_times_l. (* n_divides computes the pair (div,mod) *) (* p is just an upper bound, acc is an accumulator *) let rec n_divides_aux p n m acc \def match n \mod m with [ O \Rightarrow match p with [ O \Rightarrow pair nat nat acc n | (S p) \Rightarrow n_divides_aux p (n / m) m (S acc)] | (S a) \Rightarrow pair nat nat acc n]. (* n_divides n m = if m divides n q times, with remainder r *) definition n_divides \def \lambda n,m:nat.n_divides_aux n n m O.