(**************************************************************************) (* ___ *) (* ||M|| *) (* ||A|| A project by Andrea Asperti *) (* ||T|| *) (* ||I|| Developers: *) (* ||T|| The HELM team. *) (* ||A|| http://helm.cs.unibo.it *) (* \ / *) (* \ / This file is distributed under the terms of the *) (* v GNU General Public License Version 2 *) (* *) (**************************************************************************) include "basic_2/notation/relations/prednormal_3.ma". include "basic_2/reduction/cpr.ma". (* NORMAL TERMS FOR CONTEXT-SENSITIVE REDUCTION *****************************) definition cnr: relation3 genv lenv term ≝ λG,L. NF … (cpr G L) (eq …). interpretation "normality for context-sensitive reduction (term)" 'PRedNormal G L T = (cnr G L T). (* Basic inversion lemmas ***************************************************) lemma cnr_inv_delta: ∀G,L,K,V,i. ⬇[i] L ≡ K.ⓓV → ⦃G, L⦄ ⊢ ➡ 𝐍⦃#i⦄ → ⊥. #G #L #K #V #i #HLK #H elim (lift_total V 0 (i+1)) #W #HVW lapply (H W ?) -H [ /3 width=6 by cpr_delta/ ] -HLK #H destruct elim (lift_inv_lref2_be … HVW) -HVW /2 width=1 by ylt_inj/ qed-. lemma cnr_inv_abst: ∀a,G,L,V,T. ⦃G, L⦄ ⊢ ➡ 𝐍⦃ⓛ{a}V.T⦄ → ⦃G, L⦄ ⊢ ➡ 𝐍⦃V⦄ ∧ ⦃G, L.ⓛV⦄ ⊢ ➡ 𝐍⦃T⦄. #a #G #L #V1 #T1 #HVT1 @conj [ #V2 #HV2 lapply (HVT1 (ⓛ{a}V2.T1) ?) -HVT1 /2 width=2 by cpr_pair_sn/ -HV2 #H destruct // | #T2 #HT2 lapply (HVT1 (ⓛ{a}V1.T2) ?) -HVT1 /2 width=2 by cpr_bind/ -HT2 #H destruct // ] qed-. lemma cnr_inv_abbr: ∀G,L,V,T. ⦃G, L⦄ ⊢ ➡ 𝐍⦃-ⓓV.T⦄ → ⦃G, L⦄ ⊢ ➡ 𝐍⦃V⦄ ∧ ⦃G, L.ⓓV⦄ ⊢ ➡ 𝐍⦃T⦄. #G #L #V1 #T1 #HVT1 @conj [ #V2 #HV2 lapply (HVT1 (-ⓓV2.T1) ?) -HVT1 /2 width=2 by cpr_pair_sn/ -HV2 #H destruct // | #T2 #HT2 lapply (HVT1 (-ⓓV1.T2) ?) -HVT1 /2 width=2 by cpr_bind/ -HT2 #H destruct // ] qed-. lemma cnr_inv_zeta: ∀G,L,V,T. ⦃G, L⦄ ⊢ ➡ 𝐍⦃+ⓓV.T⦄ → ⊥. #G #L #V #T #H elim (is_lift_dec T 0 1) [ * #U #HTU lapply (H U ?) -H /2 width=3 by cpr_zeta/ #H destruct elim (lift_inv_pair_xy_y … HTU) | #HT elim (cpr_delift G (⋆) V T (⋆. ⓓV) 0) // #T2 #T1 #HT2 #HT12 lapply (H (+ⓓV.T2) ?) -H /4 width=1 by tpr_cpr, cpr_bind/ -HT2 #H destruct /3 width=2 by ex_intro/ ] qed-. lemma cnr_inv_appl: ∀G,L,V,T. ⦃G, L⦄ ⊢ ➡ 𝐍⦃ⓐV.T⦄ → ∧∧ ⦃G, L⦄ ⊢ ➡ 𝐍⦃V⦄ & ⦃G, L⦄ ⊢ ➡ 𝐍⦃T⦄ & 𝐒⦃T⦄. #G #L #V1 #T1 #HVT1 @and3_intro [ #V2 #HV2 lapply (HVT1 (ⓐV2.T1) ?) -HVT1 /2 width=1 by cpr_pair_sn/ -HV2 #H destruct // | #T2 #HT2 lapply (HVT1 (ⓐV1.T2) ?) -HVT1 /2 width=1 by cpr_flat/ -HT2 #H destruct // | generalize in match HVT1; -HVT1 elim T1 -T1 * // #a * #W1 #U1 #_ #_ #H [ elim (lift_total V1 0 1) #V2 #HV12 lapply (H (ⓓ{a}W1.ⓐV2.U1) ?) -H /3 width=3 by tpr_cpr, cpr_theta/ -HV12 #H destruct | lapply (H (ⓓ{a}ⓝW1.V1.U1) ?) -H /3 width=1 by tpr_cpr, cpr_beta/ #H destruct ] qed-. lemma cnr_inv_eps: ∀G,L,V,T. ⦃G, L⦄ ⊢ ➡ 𝐍⦃ⓝV.T⦄ → ⊥. #G #L #V #T #H lapply (H T ?) -H /2 width=4 by cpr_eps, discr_tpair_xy_y/ qed-. (* Basic properties *********************************************************) (* Basic_1: was: nf2_sort *) lemma cnr_sort: ∀G,L,s. ⦃G, L⦄ ⊢ ➡ 𝐍⦃⋆s⦄. #G #L #s #X #H >(cpr_inv_sort1 … H) // qed. lemma cnr_lref_free: ∀G,L,i. |L| ≤ i → ⦃G, L⦄ ⊢ ➡ 𝐍⦃#i⦄. #G #L #i #Hi #X #H elim (cpr_inv_lref1 … H) -H // * #K #V1 #V2 #HLK lapply (drop_fwd_length_lt2 … HLK) -HLK #H elim (lt_refl_false i) /2 width=3 by lt_to_le_to_lt/ qed. (* Basic_1: was only: nf2_csort_lref *) lemma cnr_lref_atom: ∀G,L,i. ⬇[i] L ≡ ⋆ → ⦃G, L⦄ ⊢ ➡ 𝐍⦃#i⦄. #G #L #i #HL @cnr_lref_free >(drop_fwd_length … HL) -HL // qed. (* Basic_1: was: nf2_abst *) lemma cnr_abst: ∀a,G,L,W,T. ⦃G, L⦄ ⊢ ➡ 𝐍⦃W⦄ → ⦃G, L.ⓛW⦄ ⊢ ➡ 𝐍⦃T⦄ → ⦃G, L⦄ ⊢ ➡ 𝐍⦃ⓛ{a}W.T⦄. #a #G #L #W #T #HW #HT #X #H elim (cpr_inv_abst1 … H) -H #W0 #T0 #HW0 #HT0 #H destruct >(HW … HW0) -W0 >(HT … HT0) -T0 // qed. (* Basic_1: was only: nf2_appl_lref *) lemma cnr_appl_simple: ∀G,L,V,T. ⦃G, L⦄ ⊢ ➡ 𝐍⦃V⦄ → ⦃G, L⦄ ⊢ ➡ 𝐍⦃T⦄ → 𝐒⦃T⦄ → ⦃G, L⦄ ⊢ ➡ 𝐍⦃ⓐV.T⦄. #G #L #V #T #HV #HT #HS #X #H elim (cpr_inv_appl1_simple … H) -H // #V0 #T0 #HV0 #HT0 #H destruct >(HV … HV0) -V0 >(HT … HT0) -T0 // qed. (* Basic_1: was: nf2_dec *) axiom cnr_dec: ∀G,L,T1. ⦃G, L⦄ ⊢ ➡ 𝐍⦃T1⦄ ∨ ∃∃T2. ⦃G, L⦄ ⊢ T1 ➡ T2 & (T1 = T2 → ⊥). (* Basic_1: removed theorems 1: nf2_abst_shift *)