(**************************************************************************) (* ___ *) (* ||M|| *) (* ||A|| A project by Andrea Asperti *) (* ||T|| *) (* ||I|| Developers: *) (* ||T|| The HELM team. *) (* ||A|| http://helm.cs.unibo.it *) (* \ / *) (* \ / This file is distributed under the terms of the *) (* v GNU General Public License Version 2 *) (* *) (**************************************************************************) include "static_2/relocation/lex.ma". include "basic_2/notation/relations/pconveta_4.ma". include "basic_2/rt_conversion/cpce_ext.ma". (* PARALLEL ETA-CONVERSION FOR FULL LOCAL ENVIRONMENTS **********************) definition lpce (h) (G): relation lenv ≝ lex (cpce h G). interpretation "parallel eta-conversion on all entries (local environment)" 'PConvEta h G L1 L2 = (lpce h G L1 L2). (* Basic properties *********************************************************) lemma lpce_bind (h) (G): ∀K1,K2. ⦃G,K1⦄ ⊢ ⬌η[h] K2 → ∀I1,I2. ⦃G,K1⦄ ⊢ I1 ⬌η[h] I2 → ⦃G,K1.ⓘ{I1}⦄ ⊢ ⬌η[h] K2.ⓘ{I2}. /2 width=1 by lex_bind/ qed. (* Advanced properties ******************************************************) lemma lpce_pair (h) (G): ∀K1,K2,V1,V2. ⦃G,K1⦄ ⊢ ⬌η[h] K2 → ⦃G,K1⦄ ⊢ V1 ⬌η[h] V2 → ∀I. ⦃G,K1.ⓑ{I}V1⦄ ⊢ ⬌η[h] K2.ⓑ{I}V2. /2 width=1 by lex_pair/ qed. (* Basic inversion lemmas ***************************************************) lemma lpce_inv_atom_sn (h) (G): ∀L2. ⦃G,⋆⦄ ⊢ ⬌η[h] L2 → L2 = ⋆. /2 width=2 by lex_inv_atom_sn/ qed-. lemma lpce_inv_bind_sn (h) (G): ∀I1,L2,K1. ⦃G,K1.ⓘ{I1}⦄ ⊢ ⬌η[h] L2 → ∃∃I2,K2. ⦃G,K1⦄ ⊢ ⬌η[h] K2 & ⦃G,K1⦄ ⊢ I1 ⬌η[h] I2 & L2 = K2.ⓘ{I2}. /2 width=1 by lex_inv_bind_sn/ qed-. lemma lpce_inv_atom_dx (h) (G): ∀L1. ⦃G,L1⦄ ⊢ ⬌η[h] ⋆ → L1 = ⋆. /2 width=2 by lex_inv_atom_dx/ qed-. lemma lpce_inv_bind_dx (h) (G): ∀I2,L1,K2. ⦃G,L1⦄ ⊢ ⬌η[h] K2.ⓘ{I2} → ∃∃I1,K1. ⦃G,K1⦄ ⊢ ⬌η[h] K2 & ⦃G,K1⦄ ⊢ I1 ⬌η[h] I2 & L1 = K1.ⓘ{I1}. /2 width=1 by lex_inv_bind_dx/ qed-. (* Advanced inversion lemmas ************************************************) lemma lpce_inv_unit_sn (h) (G): ∀I,L2,K1. ⦃G,K1.ⓤ{I}⦄ ⊢ ⬌η[h] L2 → ∃∃K2. ⦃G,K1⦄ ⊢ ⬌η[h] K2 & L2 = K2.ⓤ{I}. /2 width=1 by lex_inv_unit_sn/ qed-. lemma lpce_inv_pair_sn (h) (G): ∀I,L2,K1,V1. ⦃G,K1.ⓑ{I}V1⦄ ⊢ ⬌η[h] L2 → ∃∃K2,V2. ⦃G,K1⦄ ⊢ ⬌η[h] K2 & ⦃G,K1⦄ ⊢ V1 ⬌η[h] V2 & L2 = K2.ⓑ{I}V2. /2 width=1 by lex_inv_pair_sn/ qed-. lemma lpce_inv_unit_dx (h) (G): ∀I,L1,K2. ⦃G,L1⦄ ⊢ ⬌η[h] K2.ⓤ{I} → ∃∃K1. ⦃G,K1⦄ ⊢ ⬌η[h] K2 & L1 = K1.ⓤ{I}. /2 width=1 by lex_inv_unit_dx/ qed-. lemma lpce_inv_pair_dx (h) (G): ∀I,L1,K2,V2. ⦃G,L1⦄ ⊢ ⬌η[h] K2.ⓑ{I}V2 → ∃∃K1,V1. ⦃G,K1⦄ ⊢ ⬌η[h] K2 & ⦃G,K1⦄ ⊢ V1 ⬌η[h] V2 & L1 = K1.ⓑ{I}V1. /2 width=1 by lex_inv_pair_dx/ qed-. lemma lpce_inv_pair (h) (G): ∀I1,I2,L1,L2,V1,V2. ⦃G,L1.ⓑ{I1}V1⦄ ⊢ ⬌η[h] L2.ⓑ{I2}V2 → ∧∧ ⦃G,L1⦄ ⊢ ⬌η[h] L2 & ⦃G,L1⦄ ⊢ V1 ⬌η[h] V2 & I1 = I2. /2 width=1 by lex_inv_pair/ qed-.